The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via elastic scattering off nuclei in CaWO 4 crystals, completed 730 kg days of data taking in 2011. We present the data collected with eight detector modules, each with a two-channel readout; one for a phonon signal and the other for coincidently produced scintillation light. The former provides a precise measure of the energy deposited by an interaction, and the ratio of scintillation light to deposited energy can be used to discriminate different types of interacting particles and thus to distinguish possible signal events from the dominant backgrounds.Sixty-seven events are found in the acceptance region where a WIMP signal in the form of low energy nuclear recoils would be expected. We estimate background contributions to this observation from four sources: (1) "leakage" from the e/γ -band (2) "leakage" from the α-particle band (3) neutrons and (4) 206 Pb recoils from 210 Po decay. Using a maximum likelihood analysis, we find, at a statistical significance of more than 4σ , that these sources alone are not sufficient to explain the data. The addition of a signal due to scattering of relatively light WIMPs could account for this discrepancy, and we determine the associated WIMP parameters.
The CRESST-II experiment uses cryogenic detectors to search for nuclear recoil events induced by the elastic scattering of dark matter particles in CaWO 4 crystals. Given the low energy threshold of our detectors in combination with light target nuclei, low mass dark matter particles can be probed with high sensitivity. In this letter we present the results from data of a single detector module corresponding to 52 kg live days. A blind analysis is carried out. With an energy threshold for nuclear recoils of 307 eV we substantially enhance the sensitivity for light dark matter. Thereby, we extend the reach of direct dark matter experiments to the sub-GeV/c 2 region and demonstrate that the energy threshold is the key parameter in the search for low mass dark matter particles.
The CRESST experiment is a direct dark matter search which aims to measure interactions of potential dark matter particles in an earth-bound detector. With the current stage, CRESST-III, we focus on a low energy threshold for increased sensitivity towards light dark matter particles. In this manuscript we describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1 eV. This result was obtained with a 23.6 g CaWO 4 crystal operated as a cryogenic scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del Gran Sasso (LNGS). Both the primary phonon/heat signal and the simultaneously emitted scintillation light, which is absorbed in a separate silicon-on-sapphire light absorber, are measured with highly sensitive transition edge sensors operated at ∼ 15 mK. The unique combination of these sensors with the light element oxygen present in our target yields sensitivity to dark matter particle masses as low as 160 MeV/c 2 .
The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number-violating process: ^{130}Te neutrinoless double-beta decay. Examining a total TeO_{2} exposure of 86.3 kg yr, characterized by an effective energy resolution of (7.7±0.5) keV FWHM and a background in the region of interest of (0.014±0.002) counts/(keV kg yr), we find no evidence for neutrinoless double-beta decay. Including systematic uncertainties, we place a lower limit on the decay half-life of T_{1/2}^{0ν}(^{130}Te)>1.3×10^{25} yr (90% C.L.); the median statistical sensitivity of this search is 7.0×10^{24} yr. Combining this result with those of two earlier experiments, Cuoricino and CUORE-0, we find T_{1/2}^{0ν}(^{130}Te)>1.5×10^{25} yr (90% C.L.), which is the most stringent limit to date on this decay. Interpreting this result as a limit on the effective Majorana neutrino mass, we find m_{ββ}<(110-520) meV, where the range reflects the nuclear matrix element estimates employed.
The CRESST cryogenic direct dark matter search at Gran Sasso, searching for WIMPs via nuclear recoil, has been upgraded to CRESST-II by several changes and improvements. The upgrade includes a new detector support structure capable of accommodating 33 modules, the associated multichannel readout with 66 SQUID channels, a neutron shield, a calibration source lift, and the installation of a muon veto. We present the results of a commissioning run carried out in 2007.The basic element of CRESST-II is a detector module consisting of a large (∼300 g) CaWO4 crystal and a very sensitive smaller (∼ 2 g) light detector to detect the scintillation light from the CaWO4. The large crystal gives an accurate total energy measurement. The light detector permits a determination of the light yield for an event, allowing an effective separation of nuclear recoils from electron-photon backgrounds. Furthermore, information from lightquenching factor studies allows the definition of a region of the energy-light yield plane which corresponds to tungsten recoils. A neutron test is reported which supports the principle of using the light yield to identify the recoiling nucleus.Data obtained with two detector modules for a total exposure of 48 kg-days are presented. Judging by the rate of events in the "all nuclear recoils" acceptance region the apparatus shows a factor ∼ten improvement with respect to previous results, which we attribute principally to the presence of the neutron shield. In the "tungsten recoils" acceptance region three events are found, corresponding to a rate of 0.063 per kg-day. Standard assumptions on the dark matter flux, coherent or spin independent interactions, then yield a limit for WIMP-nucleon scattering of 4.8 × 10 −7 pb, at M WIMP ∼ 50 GeV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.