We explore the effects of the multi-phase structure of the interstellar medium (ISM) on galactic magnetic fields. Basing our analysis on compressible magnetohydrodynamic (MHD) simulations of supernova-driven turbulence in the ISM, we investigate the properties of both the mean and fluctuating components of the magnetic field. We find that the mean magnetic field preferentially resides in the warm phase and is generally absent from the hot phase. The fluctuating magnetic field does not show such pronounced sensitivity to the multi-phase structure.
We explore the effect of magnetic fields on the vertical distribution and multiphase structure of the supernova-driven interstellar medium in simulations that admit dynamo action. As the magnetic field is amplified to become dynamically significant, gas becomes cooler and its distribution in the disc becomes more homogeneous. We attribute this to magnetic quenching of vertical velocity, which leads to a decrease in the cooling length of hot gas. A non-monotonic vertical distribution of the large-scale magnetic field strength, with the maximum at |z| ≈ 300 pc causes a downward pressure gradient below the maximum which acts against outflow driven by SN explosions, while it provides pressure support above the maximum.
The role of magnetic fields in the multi-phase interstellar medium (ISM) is explored using magnetohydrodynamic (MHD) simulations that include energy injection by supernova (SN) explosions and allow for dynamo action. Apart from providing additional pressure support of the gas layer, magnetic fields reduce the density contrast between the warm and hot gas phases and quench galactic outflows. A dynamo-generated, self-consistent large-scale magnetic field affects the ISM differently from an artificially imposed, unidirectional magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.