We have developed an automated multiplex system for simultaneously screening hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus type 1 (HIV-1) in blood donations. The assay, designated AMPLINAT MPX HBV/HCV/HIV-1 Test (AMPLINAT MPX), consists of virus extraction and target sequence-specific probe capture on specimen preparation workstation GT-X (Roche Diagnostics K.K., Tokyo, Japan) and amplification and detection by TaqMan PCR on the ABI PRISM 7700 Analyzer (PerkinElmer Applied Biosystems, Foster City, Calif.). An internal control (IC) is incorporated in the assay to monitor the extraction, target amplification, and detection processes. The assay yields qualitative results without discrimination of the three targets. Detection limits (95% confidence interval) are 22 to 60 copies/ml for HBV, 61 to 112 IU/ml for HCV, and 33 to 66 copies/ml for HIV-1, using a specimen input volume of 0.2 ml. The AMPLINAT MPX assay detects a broad range of genotypes or subtypes for all three viruses and has a specificity of 99.6% for all three viruses with seronegative specimens. In an evaluation of seroconversion panels, the AMPLINAT MPX assay detects HBV infection an average of 24 days before the detection of HBsAg by enzyme immunoassay. HCV RNA was detected an average of 31 days before HCV antibody. HIV-1 RNA was detected an average of 14 days before HIV-1 antibody and an average of 9 days before p24 antigen. The Japanese Red Cross has been evaluating the AMPLINAT MPX system since October 1999. The clinical performance indicates that the AMPLINAT MPX system is robust, sensitive, and reproducible, with a high percentage of valid assay runs (96.8%), a low false-positive rate (0.34%), and a low IC failure rate (0.24%).
1. The changes in membrane permeability to small molecules caused by Sendai virus [Pasternak & Micklem (1973) J. Membr. Biol. 14, 293-303] have been further characterized. The uptake of substances that are concentrated within cells is inhibited. Choline and 2-deoxyglucose, which become phosphorylated, and aminoisobutyrate and glycine, which are driven by a Na+-linked mechanism, are examples. The uptake of each compound under conditons where its diffusion across the plasma membrane is rate-limiting is stimulated by virus. Choline, 2-deoxyglucose and amino acids at high concentration, amino acids in Na+-free medium, and most substances at low temperature, are examples. It is concluded that virally mediated decrease of uptake is due to one of two causes. Substances that are accumulated by phosphorylation are not retained because of leakage of the phosphorylated metabolites out of cells. Substances that are accumulated by linkage to a Na+ gradient are no longer accumulated because of collapse of the gradient resulting from an increased permeability to Nat 2. Increased permeability to K+ and Na+ results in (a) membrane depolarization and (b) cell swelling. The latter event leads to haemolysis (for erythrocytes) and can lead to giant-cell (polykaryon) formation (for several cell types). 3. Recovery of cells can be temporarily achieved by the addition of Ca2+; permanent recovery requires incubation for some hours at 37 degrees C. 4. The possible significance of virally mediated permeability changes, with regard to clinical situations and to cell biology, is discussed.
1. Intact F glycoprotein is required to induce permeability changes in Lettrée cells or in erythrocytes. Some HN glycoproteins may also be required. Permeability changes thus offer a simple, accurate and rapid means of assaying the integrity of F glycoprotein in certain viral preparations. 2. The ‘1-day’ virus (which contains intact F glycoprotein but which differs morphologically from ‘3 day’ virus) does not cause permeability changes; it can be rendered active by various physical treatments. It is concluded that the environment in which F glycoprotein is embedded is a determining factor for permeability changes. 3. The entry of fluorescently labelled peptides into cells made permeable by virus has been measured. Peptides having a molecular weight in excess of 1000 enter poorly, suggesting a ‘pore’ size of approx. 1 nm in diameter. 4. Two novel assay methods concerned with virus—cell fusion are described. The first measures the fluorescence enhancement that occurs when anthroylstearate is transferred from anthroylstearate-labelled virus to cells. The second measures the giant-cell formation that occurs when partially fused erythrocytes are exposed to hypo-osmotic treatment. The ‘1-day’ virus is active in these assays. In contrast with permeability changes, virus—cell fusion is insensitive to changes in external Ca2+-concentration. 5. The results are compatible with a model [Knutton & Pasternak (1979) Trends Biochem. Sci. 4, 220—223; Impraim, Foster, Micklem & Pasternak (1980) Biochem. J. 186, 847—860] in which virus—cell fusion is a prerequisite for permeability changes, and in which permeability changes are the cause of haemolysis and giant-cell (polykaryon) formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.