The efficiency of bacterial strains isolated from Nigeria Deep Atlantic Ocean water and sediment (2450 m -2774 m depths) to biodegrade total petroleum hydrocarbons (TPH, n-alkanes) constituents of 1% crude oil was compared with that of similar isolate from oily wastewater reservoir in Imo State, Nigeria. Standardized bacterial strains (OD 546 1.0) with similar morphological and biochemical characteristics from surface seawater (HBW12a), bottom seawater (HBW12b), superficial sediment (HBS12) and oily wastewater reservoir (HMWP) were selected and their TPH biodegradation efficiency in 30 days was quantified by gas chromatographic analysis (GC-FID). TPH fractions (n-C 8 -n-C 40 ) of Bonny light crude oil was degraded significantly (P≤0.05) by all the four isolates. HMWP, HBW12b, HBS12 and HBW12a degraded 85.7%, 80.8%, 79.1% and 78.6% of TPH respectively. Although bacterial isolates from oily wastewater reservoir (HMWP) possessed highest degradative capabilities, isolates from seawater surface (HBW12a) and seawater bottom (HBW12b) as well as sediment (HBS12) also exhibited crude oil degradative potential. The four isolates have been tentatively identified as Pseudomonas. The gas chromatograms showed a distribution from n-C 11 to n-C 36 alkanes with the fractions of n-C 15 , n-C 17 and n-C 19 showing relatively high concentrations at the onset of experiment followed by a significant degradation in 30 days by all the isolates. The n-C 17 /pristane peak ratios of 0.43, 0.47, 0.47 and 0.48 for HMWP, HBW12a, HBW12b and HBS12 respectively in day 30 also affirmed TPH biodegradation by all the isolates. Indigenous bacteria from deep Atlantic Ocean water column and sediment thus possess capabilities for biotechnological applications in deep water bioremediation. Citation: Akinde SB, Iwuozor CC,Obire O (2012) Alkane Degradative Potentials of Bacteria Isolated From the Deep Atlantic Ocean of the Gulf of Guinea. J Bioremed Biodegrad 3:135.
Perylene and penta-aromatic hydrocarbons were determined in sediments as part of a study that was dedicated to the aquatic ecosystem of Elelenwo Creek (Southern Nigeria) in order to carry out a critical corroboration of occurrence and diagenetic evolution of perylene in the sediments of the creek. The results show that the annual mean levels of Benzo [g, h, i] Perylene ranged from 209.00 -245.28 µg/kg dry weight at the various stations sampled. Meanwhile, Station 3 recorded the highest mean level of 245.28 µg/kg dry weight. The observed values for total penta-aromatic hydrocarbons were high (787.00 -1154.36µg/kg dry weight) in all the stations sampled. In addition, the highest mean value of 1154.36µg/kg dry weight was again recorded at station 3 for the penta-aromatic hydrocarbons. One origin index or concentration ratio of Ip/Ip+BghiP was also used to evaluate the suitability of the penta-aromatic hydrocarbons as a tracer to distinguish between contaminations arising from different sources. The values for the sampling stations therefore ranged from 0.41 to 0.43. A critical appraisal of the PAH index, consequently, suggested that petroleum combustion is the major penta-aromatic hydrocarbon source in sediments of the creek. The PAH group profile shows that perylene was high in the sediments and would pose apparent effects in fauna. The high concentration of perylene in the sediments was also indicative of an in situ biogenic derivation. Furthermore, a concentration of perylene > 10 % of total penta-aromatic hydrocarbons established a credible diagenetic origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.