This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided quantitative evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs) were objectively identified over the North China region during 2000–2009, using obliquely rotated T-mode principal component analysis (PCA). The resulting CTs were examined in relation to the local meteorology, regional transport pathways, and air quality parameters, respectively. The FLEXPART-WRF model was used to calculate 48-h backward plume trajectories for each CT. Each CT was characterized with distinct local meteorology and air mass origin. CT 1 (high pressure to the west with a strong pressure gradient) was characterized by a northwestern air mass origin, with the smallest local and southeasterly air mass sources, and CT 6 (high pressure to the northwest) had air mass sources mostly from the north and east. On the contrary, CTs 5, 8, and 9 (weak pressure field, high pressure to the east, and low pressure to the northwest, respectively) were characterized by southern and southeastern trajectories, which indicated a greater influence of high pollutant emission sources. In turn, poor air quality in Beijing (high loadings of PM<sub>10</sub>, BC, SO<sub>2</sub>, NO<sub>2</sub>, NO<sub>x</sub>, O<sub>3</sub>, AOD, and low visibility) was associated with these CTs. Good air quality in Beijing was associated with CTs 1 and 6. The average visibilities (with ±1σ) in Beijing for CTs 1 and 6 during 2000–2009 were 18.5 ± 8.3 km and 14.3 ± 8.5 km, respectively. In contrast, low visibility values of 6.0 ± 3.5 km, 6.6 ± 3.7 km, and 6.7 ± 3.6 km were found in CTs 5, 8, and 9, respectively. The mean concentrations of PM<sub>10</sub> for CTs 1, 6, 5, 8, and 9 during 2005–2009 were 90.3 ± 76.3 μg m<sup>−3</sup>, 111.7 ± 89.6 μg m<sup>−3</sup>, 173.4 ± 105.8 μg m<sup>−3</sup>, 158.4 ± 90.0 μg m<sup>−3</sup>, and 151.2 ± 93.1 μg m<sup>−3</sup>, respectively. <br></br> Analysis of the relationship between circulation pattern and air quality during the emission control period suggests that CTs are the primary drivers of day-to-day variations in pollutant concentrations over Beijing and its vicinity. During the Olympics period, the frequency of CT 6 was twice that of the mean in August from 2000 to 2009. This CT had northerly transport pathways and favorable meteorological conditions (e.g. frequent precipitation) for clean air during the Olympics. Assuming that relationships between CTs and air quality parameters in the same season are fixed in different years, the relative contributions of synoptic circulation to decreases in PM<sub>10</sub>, BC, SO<sub>2</sub>, NO<sub>2</sub>, NO<sub>x</sub>, CO, and horizontal light extinction during the Olympics were ...
Abstract. In order to quantify the aerosol impact on climate, a range of aerosol parameters are required. In this paper, twoyear of ground-based observations of aerosol optical properties from an urban site in Beijing of China are assessed. The aerosol absorption coefficient (σ a ), scattering coefficient (σ s ), as well as single scattering albedo (ω) are analyzed to aid in characterizing Beijing's urban aerosol. Two-year averages (and standard deviations) for σ a at 532 nm, σ s at 525 nm and ω at 525 nm are 56±49 Mm −1 , 288±281 Mm −1 and 0.80±0.09, respectively. Meanwhile, there is a distinct diurnal variation for σ a , with its minimum occurring at approximately 14:00 to 15:00 and maximum at midnight. σ s peaks in the late morning and the minimum occurs in the evening. σ s in summer is higher than that in winter. ω is also higher in summer than that in winter, except before 07:00 a.m., and peaks in the early afternoon. Both σ a and σ s show strong dependence on local wind in all four seasons. When the wind blows from the north with low speed (0-2 m/s), the values of σ a are high, and in contrast, very low with wind speeds higher than 4 m/s. When the wind blows from south with low speed (0-4 m/s), σ a is intermediate. The patterns of the wind dependence of σ a indicates that σ a is mainly dominated by local emissions. σ s displays a similar dependence on wind speed and direction to σ a , except in summer. In summer, the σ s value is highest when wind is from southeast with speed of 0-6 m/s. This indicates that the particle pollution resulting from regional transport is only significant in the summer season. ω also shows wind dependence to some extent though not as strong as σ a or σ s . Overall, the wind dependence results provide valuable information about the locations of Correspondence to: C. C. Li (ccli@pku.edu.cn) aerosol pollution sources and suggest that the air pollution in summer is a regional problem but in other seasons it is mainly affected by local urban emissions.
Abstract. The aerosol extinction-to-backscatter ratio is an important parameter for inverting LIDAR signals in the LI-DAR equation. It is a complicated function of the aerosol microphysical characteristics. In this paper, a method to retrieve the column-averaged aerosol extinction-to-backscatter ratio by constraining the aerosol optical depths (AOD) from a Micro-pulse LIDAR (MPL) by the AOD measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. Both measurements were taken on cloud free days between 1 May 2003 and 30 June 2004 over Hong Kong, a coastal city in south China. Simultaneous measurements of aerosol scattering coefficients with a forward scattering visibility sensor are compared with the LI-DAR retrieval of aerosol extinction coefficients. The data are then analyzed to determine seasonal trends of the aetrosol extinction-to-backscatter ratio. In addition, the relationships between the extinction-to-backscatter ratio and wind conditions as well as other aerosol microphysical parameters are presented. The mean aerosol extinction-to-backscatter ratio for the whole period was found to be 29.1±5.8 sr, with a minimum of 18 sr in July 2003 and a maximum of 44 sr in March 2004. The ratio is lower in summer because of the dominance of oceanic aerosols in association with the prevailing southwesterly monsoon. In contrast, relatively larger ratios are noted in spring and winter because of the increased impact of local and regional industrial pollutants associated with the northerly monsoon. The extended LIDAR measurements over Hong Kong provide not only a more accurate retrieval of aerosol extinction coefficient profiles, but also significant substantial information for air pollution and climate studies in the region.
As part of the Tibet Ozone, Aerosol and Radiation (TOAR) project, a micropulse lidar was operated in Naqu (31.5°N, 92.1°E; 4508 m MSL) on the Tibetan Plateau to observe cirrus clouds continuously from 19 July to 26 August 2011. During the experiment, the time coverage of ice clouds only was 15% in the upper troposphere (above 9.5 km MSL). The cirrus top/bottom altitudes (mean values of 15.6/14.7 km) are comparable to those measured previously at tropical sites but relatively higher than those measured at midlatitude sites. The majority of the cloud layers yielded a lidar ratio between 10 and 40 sr, with a mean value of 28 ± 15 sr, characterized by a bimodal frequency distribution. Subvisible, thin, and opaque cirrus formation was observed in 16%, 34%, and 50% of all cirrus cases, respectively. A mean cirrus optical depth of 0.33 was observed over the Tibetan Plateau, slightly higher than those in the subtropics and tropics. With decreasing temperature, the lidar ratio increased slightly, whereas the mean extinction coefficient decreased significantly. The occurrence of clouds is highly correlated with the outgoing longwave radiation and the strong cold perturbations in the upper troposphere. Deep convective activity and Rossby waves are important dynamical processes that control cirrus variations over the Tibetan Plateau, where both anvil cirrus outflowing from convective cumulonimbus clouds and large-scale strong cold perturbations in the upper troposphere should play an important role in cirrus formation.
Abstract. Vertical profiles of aerosol extinction coefficients were measured by a micro-pulse lidar at Naqu (31.5 • N, 92.1 • E; 4508 m a.m.s.l.), a meteorological station located on the central part of the Tibetan Plateau during summer 2011. Observations show a persistent maximum in aerosol extinction coefficients in the upper troposphere-lower stratosphere (UTLS). These aerosol layers were generally located at an altitude of 18-19 km a.m.s.l., 1-2 km higher than the tropopause, with broad layer depth ranging approximately 3-4 km and scattering ratio of 4-9. Daily averaged aerosol optical depths (AODs) of the enhanced aerosol layers in UTLS over the Tibetan Plateau varied from 0.007 to 0.030, in agreement with globally averaged levels of 0.018 ± 0.009 at 532 nm from previous observations, but the percentage contributions of the enhanced aerosol layers to the total AOD over the Tibetan Plateau are higher than those observed elsewhere. The aerosol layers in UTLS wore off gradually with the reducing intensity of the Asian monsoon over the Tibetan Plateau at the end of August. The eruption of Nabro volcano on 13 June 2011 is considered an important factor to explain the enhancement of tropopause aerosols observed this summer over the Tibetan Plateau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.