Due to their special physical and chemical properties and potential applications from hydrogen storage to medical implantation, the carbon-based nanomaterials are in the frame of attention for many research groups all over the world. As synthesis techniques, we highlight arc discharge, chemical vapor deposition (CVD) and laser ablation. Even an expensive technique, laser ablation is suitable for single-wall carbon nanotubes (SWCNTs) synthesis, providing the highest yield of over 70%, while arc discharge yield is about 30% and CVD is about 42%. The most common investigation methods for carbon nanomaterials are micro-Raman spectroscopy, thermo-gravimetric analysis (TGA) and morphological and topographic studies done by atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). We also emphasize in this work that by involving a home-designed reactor, we successfully synthesized SWCNTs, carbon nano-onions (CNOs) as well as graphene in the same reactor. Tuning the experimental parameters, we switch the end type of nanomaterials. We have done comprehensive studies regarding the carbon nanomaterials synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.