It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be considered over and above leaf deciduousness for searching functional guilds in a Cerrado woody community. For the first time a relationship between bud composition, shoot growth and leaf production pattern is found in savanna woody plants.
Growth and leaf nutrient content were compared in young potted plants of Copaifera langsdorffii in sunny and shaded areas without water stress. Besides, carbon assimilation and leaf water relations were evaluated by net photosynthesis, potential photochemical efficiency and leaf water potential during daily courses in dry and rainy periods under natural conditions in both contrasting irradiances. Higher values of total biomass, height and leaf area occurred in sunny than in shaded area. On the other hand, all young plants survived in shade under natural water stress probably by reason of fast and intense biomass accumulation in favor of roots in early development. There was no significant difference about nutrient concentration in leaves between plants growing in sunny and shaded areas. Net photosynthesis in shade increased occasionally when bunches of direct light reached the leaves. Theses sunflecks took place more frequently and at high intensity in dry period but they were more effective for net photosynthesis in rainy period. The ability of young plants to persist under natural conditions in contrasting irradiance up to 1,230 days after sowing could explain the wide distribution of C. langsdorffii in Cerrado physiognomies and in different types of forest.Key words: Cerrado, biomass partitioning, chlorophyll fluorescence, leaf gas exchange, irradiance, sunflecks. resUMoO crescimento e o conteúdo de nutrientes nas folhas foram comparados em plantas jovens envasadas de Copaifera langsdorffii crescendo em área sob irradiância total e em área sombreada sem estresse hídrico. A assimilação de carbono e as relações hídricas foram avaliadas por meio da fotossíntese líquida, da eficiência fotoquímica potencial e do potencial hídrico foliar durante cursos diários no período seco e chuvoso nas duas áreas com irradiâncias contrastantes. Maiores valores de biomassa total, altura e área foliar ocorreram na área sob irradiância plena. As plantas jovens sobreviveram sob estresse hídrico em condições naturais na área sombreada provavelmente em função do rápido e intenso acúmulo de biomassa nas raízes logo no início do desenvolvimento. Não houve diferença significativa em relação à concentração de nutrientes entre as plantas crescendo sob diferentes regimes de iluminação. A fotossíntese líquida sob sombreamento aumentou ocasionalmente quando feixes de luz que atravessaram as copas atingiram diretamente as folhas de C. langsdorffii. Esses feixes de luz ocorreram com maior intensidade e mais freqüentemente no período seco, mas foram mais efetivos para a assimilação líquida no período chuvoso. A habilidade das plantas jovens persistirem em condições naturais sob os dois regimes contrastantes de irradiância até 1.230 dias após a semeadura pode explicar a vasta distribuição de C. langsdorffii nas diferentes fisionomias do Cerrado e em outras formações florestais. palavras-chave: Cerrado, feixes de irradiância, fluorescência da clorofila, partição da biomassa, sobrevivência, trocas gasosas foliares.
impacts of LUC on soil C budget to deep sub-soil layers in agricultural systems. Finally, the data indicate that expansion of sugarcane over coffee and citrus agrosystems may impact the sustainability of ethanol production because of LUC-induced depletion of soil C stock and degradation of soil quality.
Three cultivars of Coffea arabica, Catuaí Vermelho IAC 81, Icatu Amarelo IAC 2944 and Obatã IAC 1669-20, were evaluated in relation to leaf gas exchange and potential photochemical efficiency of photosystem II under field conditions on clear and cloudy days in the wet season in southeast Brazil. Independent of levels of irradiance, leaf water potential (ψ leaf ) values were always higher than the minimum required to affect daily net photosynthesis (P N ). P N , stomatal conductance (g s ), leaf transpiration (E) and the index of photochemical efficiency (F v /F m ) declined on a clear day in all cultivars. The depression of leaf gas exchange and F v /F m (specially around midday) caused a strong decrease (about 70 %) in daily carbon gain on a clear day. Under cloudless conditions, g s and P N were correlated with the air vapour pressure deficit (VPD air ), but not with photosynthetic photon flux density (PPFD) values. On a cloudy day, the daily carbon gain was barely limited by PPFD below 800 µmol m −2 s −1 , the F v /F m values showed a slight decrease around midday, and g s and P N were positively correlated with PPFD but not with VPD air . By contrast, irrespective of the contrasting irradiance conditions during the day, P N and E were correlated with g s .
We studied the Paraíba do Sul river watershed, São Paulo state (PSWSP), Southeastern Brazil, in order to assess the land use and cover (LULC) and their implications to the amount of carbon (C) stored in the forest cover between the years 1985 and 2015. The region covers an area of 1,395,975 ha. We used images made by the Operational Land Imager (OLI) sensor (OLI/Landsat-8) to produce mappings, and image segmentation techniques to produce vectors with homogeneous characteristics. The training samples and the samples used for classification and validation were collected from the segmented image. To quantify the C stocked in aboveground live biomass (AGLB), we used an indirect method and applied literature-based reference values. The recovery of 205,690 ha of a secondary Native Forest (NF) after 1985 sequestered 9.7 Tg (Teragram) of C. Considering the whole NF area (455,232 ha), the amount of C accumulated along the whole watershed was 35.5 Tg, and the whole Eucalyptus crop (EU) area (113,600 ha) sequestered 4.4 Tg of C. Thus, the total amount of C sequestered in the whole watershed (NF + EU) was 39.9 Tg of C or 145.6 Tg of CO2, and the NF areas were responsible for the largest C stock at the watershed (89%). Therefore, the increase of the NF cover contributes positively to the reduction of CO2 concentration in the atmosphere, and Reducing Emissions from Deforestation and Forest Degradation (REDD+) may become one of the most promising compensation mechanisms for the farmers who increased forest cover at their farms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.