Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. In addition to the crossflow which originates from the jets following impingement, an initial crossflow is present which approaches the array through an upstream extension of the channel. The temperature of the initial crossflow air may differ from the jet air temperature. The configurations considered are intended to model the impingement cooled midchord region of gas turbine airfoils in cases where an initial crossflow is also present. Nusselt numbers and dimensionless adiabatic wall temperatures resolved to one streamwise jet hole spacing were experimentally determined for ratios of the initial crossflow rate to the total jet flow rate ranging from zero to unity. These are presented and discussed relative to the flow and geometric parameters.
The performance and detailed flow characteristics of a high pressure ratio mixed flow turbine has been investigated under steady and pulsating flow conditions. The rotor has been designed to have a nominal constant incidence (based on free vortex flow in the volute) and it is for use in an automotive high speed diesel turbocharger. The results indicated a departure from the quasi-steady analysis commonly used in turbocharger turbine design. The pulsations from the engine have been followed through the inlet pipe and around the volute; the pulse has been shown to propagate close to the speed of sound and not according to the bulk flow velocity as stated by some researchers. The flow entering and exiting the blades has been quantified by a laser Doppler velocimetry system. The measurements were performed at a plane 3.0 mm ahead of the rotor leading edge and 9.5 mm behind the rotor trailing edge. The turbine test conditions corresponded to the peak efficiency point at 29,400 and 41,300 rpm. The results were resolved in a blade-to-blade sense to examine in greater detail the nature of the flow at turbocharger representative conditions. A correlation between the combined effects of incidence and exit flow angle with the isentropic efficiency has been shown. The unsteady flow characteristics have been investigated at two flow pulse frequencies, corresponding to internal combustion engine speeds of 1600 and 2400 rpm. Four measurement planes have been investigated: one in the pipe feeding the volute, two in the volute (40 deg and 130 deg downstream of the tongue) and one at the exit of the turbine. The pulse propagation at these planes has been investigated; the effect of the different planes on the evaluation of the unsteady isentropic efficiency is shown to be significant. Overall, the unsteady performance efficiency results indicated a significant departure from the corresponding steady performance, in accordance with the inlet and exit flow measurements.
The performance and detailed flow characteristics of a high pressure ratio mixed flow turbine has been investigated under steady and pulsating flow conditions. The rotor has been designed to have a nominal constant incidence (based on free vortex flow in the volute) and it is for use in an automotive high speed diesel turbocharger. The results indicated a departure from the quasi-steady analysis commonly used in turbocharger turbine design. The pulsations from the engine have been followed through the inlet pipe and around the volute; the pulse has been shown to propagate close to the speed of sound and not according to the bulk flow velocity as stated by some researchers. The flow entering and exiting the blades has been quantified by a laser Doppler velocimetry system. The measurements were performed at a plane 3.0 mm ahead of the rotor leading edge and 9.5 mm behind the rotor trailing edge. The turbine test conditions corresponded to the peak efficiency point at 29,400 and 41,300 rpm. The results were resolved in a blade-to-blade sense to examine in greater detail the nature of the flow at turbocharger representative conditions. A correlation between the combined effects of incidence and exit flow angle with the isentropic efficiency has been shown. The unsteady flow characteristics have been investigated at two flow pulse frequencies, corresponding to internal combustion engine speeds of 1600 and 2400 rpm. Four measurement planes have been investigated: one in the pipe feeding the volute, two in the volute (40° and 130° downstream of the tongue) and one at the exit of the turbine. The pulse propagation at these planes has been investigated; the effect of the different planes on the evaluation of the unsteady isentropic efficiency is shown to be significant. Overall, the unsteady performance efficiency results indicated a significant departure from the corresponding steady performance, in accordance with the inlet and exit flow measurements.
The steady and unsteady performance of two mixed-flow turbocharger turbine rotors has been investigated. These rotors differ mainly in their inlet blade angle geometry; one has a constant blade angle (rotor A) and the other a notionally constant incidence angle (rotor B). The results indicate that the constant blade inlet angle design offers improved efficiency characteristics over the constant incidence one with total-to-static efficiency at the design point ranging between 0.7 and 0.76. A detailed assessment of the influence of volute geometry on the turbine performance has been carried out, which confirmed that the geometry of volute plays a critical role in the overall performance of a turbine. The unsteady performance tests have indicated a substantial deviation from the performance and flow characteristics of equivalent steady-state tests, which is quantified and discussed.
The steady performance of mainly two high pressure ratio mixed flow turbines for an automotive turbocharger (expansion ratio of 2.9) has been investigated and the results indicated superior performance of the rotor with a constant inlet blade angle relative to that with a nominally constant incidence angle. These results have been confirmed by the measurement of the three components of velocity, the Reynolds normal stresses and the flow angle at the inlet and exit of the mixed-flow turbine rotors by laser Doppler velocimetry (LDV) under steady state conditions. The turbine testing conditions corresponded to the 50% and 70% design speeds, equivalent to 29,400 and 41,300 rpm respectively. The velocity results have indicated that the flow upstream of the rotor varies significantly along the blade inlet plane, and this is more evident at the 50% design speed. The flow in the volute behaves as a free vortex except in regions close to the hub, while the exit flow revealed that the constant incidence design rotor has a significantly higher exit swirl angle than the constant blade design, in agreement with the higher exit kinetic energy loss in the former case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.