In the present study, WC/Cu60Zr30Ti10 metallic glass composite powders were prepared by mechanical alloying of pure Cu, Zr, Ti, and WC powder mixtures. Cu60Zr30Ti10 metallic glass composite powders were obtained after 5 h of milling as confirmed by X-ray diffraction and differential scanning calorimetry. The metallic glass composites powders were found to exhibit a supercooled liquid region before crystallization. Bulk metallic glass (BMG) composites were synthesized by vacuum hot pressing the as-milled Cu60Zr30Ti10 metallic glass composite powders at 723 K in the pressure range of 0.72-1.20 GPa. BMG composite with submicron WC particles homogeneously embedded in a highly dense anocrystalline/amorphous matrix was successfully prepared under applied pressure of 1.20 GPa. It was found that the pressure could enhance the thermal stability and promotes nocrystallization of WC/Cu60Zr30Ti10 BMG composites.
The solidification of a phase change material (PCM), exemplified by a molten metal, in a thick-walled container is analyzed in this paper. The effects of natural convection and several important controlling parameters are investigated extensively. These parameters include the initial temperature of the PCM, external cooling conditions, thickness and thermal properties of the wall, and the thermal contact resistance at the PCM/wall interface. Two representative configurations are examined in this study. A modified version of the enthalpy formulation in which the sensible heat is separated from the latent heat, is employed to construct the energy equation for the PCM. Vorticity-stream-function approach is adopted for solving the flow field. The governing equations pertinent to the problem are discretized by the weighting function scheme and finally solved by the SIS (Strongly Implicit Solver) algorithm. It is demonstrated that for both configurations natural convection has prominent effect on the temperature distribution of the liquid phase of the PCM; however, the effect of natural convection on the shape of the solid/liquid interface and the overall solid fraction is case dependent. It is also shown that the above-mentioned controlling parameters have a direct impact on the solidification process. Specifically, an increase in the Biot number (from 1 to infinity) and the thermal diffusivity of the mold (from 0.8 to 5) enhances the solidification rate. Reverse effect was found for the other controlling parameters.
Mg55Y15Cu30 metallic glass powders were prepared by the mechanical alloying of
pure Mg, Y, and Cu after 10 h of milling. The thermal stability of these Mg55Y15Cu30
amorphous powders was investigated using the differential scanning calorimeter (DSC).
Tg ,Tx , and Δ Tx are 442 K, 478 K, and 36 K, respectively. The as-milled Mg55Y15Cu30
powders were then consolidated by vacuum hot pressing into disk compacts with a diameter
and thickness of 10 mm and 1 mm, respectively. This yielded bulk Mg55Y15Cu30 metallic
glass with nanocrystalline precipitates homogeneously embedded in a highly dense glassy
matrix. The pressure applied during consolidation can enhance thermal stability and
prolong the existence of amorphous phase within Mg55Y15Cu30 powders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.