Differentiation therapy could be one strategy for stopping cancer cell proliferation. A plant steroid, diosgenin, is known to induce megakaryocytic differentiation in human erythroleukemia (HEL) cells. In recent studies, the use of sedimentation field-flow fractionation (SdFFF) allowed the preparation of subpopulations that may differ in regard to sensitivity to differentiation induction. The specific goal of this study was to determine the relationship between cell cycle stage and sensitivity to megakaryocytic differentiation induction of HEL cells. After first confirming the capacity of diosgenin to specifically select targets, hyperlayer SdFFF cell sorting was used to prepare fractions according to cell cycle position from crude HEL cells. The sensitivities of these fractions to diosgenin-induced differentiation were then tested. The coupling of SdFFF cell separation to imaging flow cytometry showed that G1-phase cells were more sensitive to differentiation induction than S/G2M-phase cells, confirming the relationship between cell status at the start of induction, the extent of the biological event, and the potential of SdFFF in cancer research.
Diosgenin is a plant steroid which is able to induce megakaryocytic differentiation of human erythroleukemia (HEL) cells followed by apoptosis at a later stage. Apoptosis markers and phospho-kinases involved during the subsequent apoptosis of megakaryocytes after diosgenin-induced differentiation in these cells were detected using a proteomic approach. In mature megakaryocytes undergoing apoptosis, we observed increased expression of intrinsic apoptosis markers such as Bax/Bcl-2 ratio and cleaved caspase-9 as well as extrinsic apoptosis markers including cell death receptors and cleaved caspase-8. Furthermore, we demonstrated the link between both apoptotic pathways by Bid cleavage and confirmed the executive phase of apoptosis by caspase-3 cleavage. For the first time, we examined kinase activation and showed that kinases including Src, Tor, Akt, CREB, RSK and Chk2 may be implicated in signalling of subsequent apoptosis of mature megakaryocytes after diosgenin-induced differentiation of HEL cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.