The aim of this work is to investigate the mechanisms controlling the current-carrying capability of YBa 2 Cu 3 O 7Ϫ␦ thin films. A comparison between the magnetic properties of a film with intrinsic grainboundary defects and two films crossed by columnar defects with different densities is presented. Such properties have been studied by means of ac susceptibility measurements, resistivity measurements, and structural characterizations. The Clem and Sanchez model ͓Phys. Rev. B 50, 9355 ͑1994͔͒ is used to extract critical current values from the susceptibility data. In the virgin film, correlated grain-boundary defects were created among islands with homogeneous size, by means of the appropriate modifications in the growth process. Columnar defects were produced through 0.25-GeV Au-ion irradiation. The central issue concerns the investigation of the plateaulike features characterizing the log-log field dependence of the critical current density, the analysis of the J c temperature dependence, and of the irreversibility line. An analytical expression of J c vs B is given in order to compare the main issues with the experimental data. This model suggests that the intergrain pinning dominates in the high-current/low-temperature regime through a network of frustrated Josephson junctions, while the intragrain pinning is effective near the irreversibility line.
A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He–Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm−1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.
Micro-Raman Spectroscopy is an efficient method for analyzing biological specimens due to its sensitivity to subtle chemical and structural changes. The aim of this study was to use micro-Raman spectroscopy to analyze chemical and structural changes in periodontal ligament after orthodontic force application and in gingival crevicular fluid in presence of periodontal disease. The biopsy of periodontal ligament samples of premolars extracted for orthodontic reasons and the gingival crevicular fluid samples collected by using absorbent paper cones; were analyzed by micro-Raman spectroscopy. Changes of the secondary protein structure related to different times of orthodontic force application were reported; whereas an increase of carotene was revealed in patients affected by periodontal inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.