Object
Previous experimental studies have documented the neuroprotection of damaged or diseased cells after applying, from outside the brain, near-infrared light (NIr) to the brain by using external light-emitting diodes (LEDs) or laser devices. In the present study, the authors describe an effective and reliable surgical method of applying to the brain, from inside the brain, NIr to the brain. They developed a novel internal surgical device that delivers the NIr to brain regions very close to target damaged or diseased cells. They suggest that this device will be useful in applying NIr within the large human brain, particularly if the target cells have a very deep location.
Methods
An optical fiber linked to an LED or laser device was surgically implanted into the lateral ventricle of BALB/c mice or Sprague-Dawley rats. The authors explored the feasibility of the internal device, measured the NIr signal through living tissue, looked for evidence of toxicity at doses higher than those required for neuroprotection, and confirmed the neuroprotective effect of NIr on dopaminergic cells in the substantia nigra pars compacta (SNc) in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson disease in mice.
Results
The device was stable in freely moving animals, and the NIr filled the cranial cavity. Measurements showed that the NIr intensity declined as distance from the source increased across the brain (65% per mm) but was detectable up to 10 mm away. At neuroprotective (0.16 mW) and much higher (67 mW) intensities, the NIr caused no observable behavioral deficits, nor was there evidence of tissue necrosis at the fiber tip, where radiation was most intense. Finally, the intracranially delivered NIr protected SNc cells against MPTP insult; there were consistently more dopaminergic cells in MPTP-treated mice irradiated with NIr than in those that were not irradiated.
Conclusions
In summary, the authors showed that NIr can be applied intracranially, does not have toxic side effects, and is neuroprotective.
This paper deals with microfluidic studies for lab-on-a-chip development. The first goal was to develop microsystems immediately usable by biologists for complex protocol integrations. All fluid operations are performed on nano-liter droplet independently handled solely by electrowetting on dielectric (EWOD) actuation. A bottom-up architecture was used for chip design due to the development and validation of elementary fluidic designs, which are then assembled. This approach speeds up development and industrialization while minimizing the effort in designing and simplifying chip-fluidic programming. Dispensing reproducibility for 64 nl droplets obtained a CV below 3% and mixing time was only a few seconds. Ease of the integration was demonstrated by performing on chip serial dilutions of 2.8-folds, four times. The second part of this paper concerns the development of new innovative fluidic functions in order to extend EWOD-actuated digital fluidics' capabilities. Experiments of particle dispensing by EWOD droplet handling are reported. Finally, work is shown concerning the coupling of EWOD actuation and magnetic fields for magnetic bead manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.