The composition and structure of lignin in different tissues—phellem (cork), phloem and xylem (wood)—of Quercus suber was studied. Whole cell walls and their respective isolated milled lignins were analyzed by pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) and derivatization followed by reductive cleavage (DFRC). Different tissues presented varied p-hydroxyphenyl:guaiacyl:syringyl (H:G:S) lignin compositions. Whereas lignin from cork has a G-rich lignin (H:G:S molar ratio 2:85:13), lignin from phloem presents more S-units (H:G:S molar ratio of 1:58:41) and lignin from xylem is slightly enriched in S-lignin (H:G:S molar ratio 1:45:55). These differences were reflected in the relative abundances of the different interunit linkages. Alkyl-aryl ethers (β–O–4′) were predominant, increasing from 68% in cork, to 71% in phloem and 77% in xylem, as consequence of the enrichment in S-lignin units. Cork lignin was enriched in condensed structures such as phenylcoumarans (β-5′, 20%), dibenzodioxocins (5–5′, 5%), as corresponds to a lignin enriched in G-units. In comparison, lignin from phloem and xylem presented lower levels of condensed linkages. The lignin from cork was highly acetylated at the γ-OH of the side-chain (48% lignin acetylation), predominantly over G-units; while the lignins from phloem and xylem were barely acetylated and this occurred mainly over S-units. These results are a first time overview of the lignin structure in xylem, phloem (generated by cambium), and in cork (generated by phellogen), in agreement with literature that reports that lignin biosynthesis is flexible and cell specific.
The lignin from Cynara cardunculus stalks was isolated by the classical Björkman method and characterized by pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR), and derivatization followed by reductive cleavage (DFRC). The milled Cynara lignin (MCyL) was constituted mainly by guaiacyl (G) and syringyl-units(S) (S/G molar ratio of 0.7), with the complete absence of p-hydroxyphenyl (H) units. The 2D-NMR analysis indicated a predominance of alkyl-aryl ether linkages (70 % of all inter unit linkages are β-O-4′) and significant amounts of condensed structures such as phenylcoumarans (β-5′, 14 %), resinols (β-β′, 7 %), spirodienones (β-1′, 5 %), and dibenzodioxocins (5-5′, 4 %). Furthermore, the analyses indicated that the lignin is partially acylated at the γ-OH (12 % acylation) by acetate groups and that acetylation occurs preferentially on syringyl-units. As in other plants, acetylation occurs at the monomer stage, and sinapyl acetate behaves as a real lignin monomer participating in lignification in cardoon stalks. The detailed structural characterization of cardoon lignin reported here will foster the industrial use of this biomass for the production of biofuels and other bio-based chemicals under the lignocellulosic biorefinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.