This paper deals with the experimental identification and the validation of a non-parametric probabilistic approach allowing model uncertainties and data uncertainties to be taken into account in the numerical model developed to predict low-and medium-frequency dynamics of structures. The analysis is performed for a composite sandwich panel representing a complex dynamical system which is sufficiently simple to be completely described and which exhibits, not only data uncertainties, but above all model uncertainties. The dynamical identification is experimentally performed for 8 panels. The experimental frequency response functions are used to identify the non-parametric probabilistic approach of model uncertainties. The prediction of the low-and medium-frequency dynamical responses obtained with the stochastic system is compared with the experimental measurements.
Semi-Plenary LectureInternational audienceThe paper deals with the robustness of uncertain computational elastoacoustic models in low- and medium-frequency ranges. The elastoacoustic system is made up of a heterogeneous viscoelastic structure coupled with an internal acoustic cavity filled with a dissipative acoustic fluid. A reduced mean elastoacoustic model is deduced from the mean finite element model by using the modal approach with the structural modes of the structure and the acoustic modes of the acoustic cavity. Data uncertainties and model uncertainties are taken into account by using a nonparametric probabilistic approach for the structure, for the acoustic cavity and for the vibroacoustic coupling interface. The main objectives of this paper are (1) to present experimental validation of the nonparametric probabilistic approach of model uncertainties and to propose methods to perform the experimental identification of the probabilistic model parameters, (2) to analyze the robustness of computational elastoacoustic models with respect to model and data uncertainties, (3) to study uncertainty propagation through complex elastoacoustic systems. Two experimental configurations are analyzed with the stochastic computational elastoacoustic model. The first experimental configuration is made up of a composite sandwich panel coupled with an acoustic cavity constituted of a simple rigid box. Experimental measurements have been performed for 8 manufactured composite panels. The second experimental configuration is a car made up of a complex heterogeneous structure coupled with a complex acoustic cavity. Experimental measurements have been performed for 22 manufactured cars of the same type with optional extra
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.