We present scaled demonstrations of backlighter sources, emitting bremsstrahlung x rays with photon energies above 75 keV, that we will use to record x-ray Compton radiographic snapshots of cold dense DT fuel in inertial confinement fusion implosions at the National Ignition Facility (NIF). In experiments performed at the Titan laser facility at Lawrence Livermore National Laboratory, we measured the source size and the bremsstrahlung spectrum as a function of laser intensity and pulse length from solid targets irradiated at 2x10(17)-5x10(18) W/cm(2) using 2-40 ps pulses. Using Au planar foils we achieved source sizes down to 5.5 microm and conversion efficiencies of about 1x10(-13) J/J into x-ray photons with energies in the 75-100 keV spectral range. We can now use these results to design NIF backlighter targets and shielding and to predict Compton radiography performance as a function of the NIF implosion yield and associated background.
The present study focuses on an ergonomic evaluation of 4 computer keyboards, based on a quantitative analysis of wrist posture and typing performance and on subjective analyses of operator comfort during typing. The objectives of this study are (1) to quantify differences in the wrist posture and in typing performance when the four different keyboards are used, and (2) to analyze the subjective preferences of the subjects for alternative keyboards compared to the standard flat keyboard.
A crucial issue for the viability of the fast ignition approach to inertial fusion energy is the transport of the ignition pulse energy from the critical surface to the high-density compressed fuel. Experiments have characterized this transport through the interaction of short pulse, high intensity lasers with solid-density targets containing thin Ka fluorescence layers. These experiments show a reasonably well-collimated beam, although with a significantly larger radius than the incident laser beam. We report on LSP calculations of these experiments, which show reasonable agreement with the experimental observations. r
Chi(c) production in hadronic Z decaysAdriani, O.; Aguilar-Benitez, M.; Ahlen, S.P.; Alcaraz, J.; Aloisio, A.; Alverson, G.; Alviggi, M.G.; Ambrosi, G.; Linde, F.L.
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Download date: 13 May 2018Physics Letters B 317 (1993) We report on inclusive gc productaon xn Z decays reconstructed via the decay mode Xc ---' J + Y This analysis is based on 1.1 mxlhon hadromc Z events. Interpreting the observed signal as Zcl, we obtain a branching ratio Br(Z ---, Zcl + X) = (7.5 ± 2 9(stat ) + 0.6(sys )) x 10 -3 Assuming all events are produced m b decays we obtain Br(b --* ;~ct + X) = (2.4 + 0 9(stat ) -4-0 2(sys )) x 10 -2. We also present an improved measurement of the branching ratio Br(Z ---* J + X) = (3.6 i 0 5(stat.) ± 0.4(sys.)) x 10 -3, obtained from dlleptomc J decays
Two critical issues related to the success of fast ignition inertial fusion have been vigorously investigated in a co-ordinated campaign in the European Union and the United States. These are the divergence of the fast electron beam generated in intense, PW laser-plasma interactions and the fast electron energy transport with the use of high intensity contrast ratio laser pulses. Proof is presented that resistivity gradient-induced magnetic fields can guide fast electrons over significant distances in (initially) cold metallic targets. Comparison of experiments undertaken in both France and the United States suggests that an important factor in obtaining efficient coupling into dense plasma is the irradiation with high intensity contrast ratio laser pulses, rather than the colour of the laser pulse itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.