Creusen, I.M.; Hazelhoff, L.; de With, P.H.N. Published in:Proceedings of the SPIE Elecronic Imaging, Video Surveillance and Transportation Imaging Applications, San Francisco, California, USA, February 8-12, 2015 Published: 01/01/2015 Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Abstract. The detection of road lane markings has many practical applications, such as advanced driver assistance systems and road maintenance. In this paper we propose an algorithm to detect and recognize road lane markings from panoramic images. Our algorithm consists of four steps. First, an inverse perspective mapping is applied to the image, and the potential road markings are segmented based on their intensity difference compared to the surrounding pixels. Second, we extract the distance between the center and the boundary at regular angular steps of each considered potential road marking segment into a feature vector. Third, each segment is classified using a Support Vector Machine (SVM). Finally, by modeling the lane markings, previous false positive detected segments can be rejected based on their orientation and position relative to the lane markings. Our experiments show that the system is capable of recognizing 93%, 95% and 91% of striped line segments, blocks and arrows respectively, as well as 94% of the lane markings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.