During machining, due to relative motion between tool and workpiece, severe thermal/frictional conditions exist at the tool-chip interface. Metal machining processes can be more efficient in terms of increasing the metal removal rate and lengthening tool life, if the thermal/frictional conditions are controlled effectively. A high pressure waterjet assisted coolant/lubricant system that can be used in conjunction with rotary tools (e.g., face milling) is developed here. The performance of this system is evaluated in terms of cutting force, surface quality, tool wear, and chip shape. The improvement in the effectiveness of the developed system with increase in water pressure and orifice diameter is also investigated. Stochastic modeling of the surface profile is performed to obtain more information about the role of waterjet in the machining process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.