Highlights d Paracrine glucagon actions are required for maintenance of normal insulin secretion d Glucagon signaling in islets involves activation of glucagon and GLP-1 receptors d Beta cell GLP-1 receptors are activated by local glucagon in a paracrine manner
The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiobesity effects of GLP-1 and PYY. Short-chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects of the predominant SCFAs formed: acetate, propionate, and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP-1 nor PYY secretion whether administered luminally or vascularly. A FFAR2- and FFAR3-specific agonist [( S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide (CFMB)/ AR420626 ] had no effect on colonic GLP-1 output, and a FFAR3 antagonist ( AR399519 ) did not decrease the SCFA-induced GLP-1 response. However, the voltage-gated Ca-channel blocker nifedipine, the K-channel opener diazoxide, and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate, and butyrate, compared with CFMB, which is a full agonist with ~750-fold higher potency than the SCFAs. In conclusion, SCFAs may increase colonic GLP-1/PYY secretion, but FFAR2/FFAR3 do not seem to be involved. Rather, SCFAs are metabolized and appear to function as a colonocyte energy source. NEW & NOTEWORTHY By the use of in situ isolated perfused rat colon we show that short-chain fatty acids (SCFAs) primarily are used as a colonocyte energy source in the rat, subsequently triggering glucagon like peptide-1 (GLP-1) secretion independent of the free fatty acid receptors FFAR2 and FFAR3. Opposite many previous studies on SCFAs and FFAR2/FFAR3 and GLP-1 secretion, this experimental model allows investigation of the physiological interactions between luminal nutrients and secretion from cells whose function depend critically on their blood supply as well as nerve and paracrine interactions.
A large number of glucagon-like-peptide-1 (GLP-1)- and peptide-YY (PYY)-producing L cells are located in the colon, but little is known about their contribution to whole body metabolism. Since bile acids (BAs) increase GLP-1 and PYY release, and since BAs spill over from the ileum to the colon, we decided to investigate the ability of BAs to stimulate colonic GLP-1 and PYY secretion. Using isolated perfused rat/mouse colon as well as stimulation of the rat colon in vivo, we demonstrate that BAs significantly enhance secretion of GLP-1 and PYY from the colon with average increases of 3.5- and 2.9-fold, respectively. Furthermore, we find that responses depend on BA absorption followed by basolateral activation of the BA-receptor Takeda-G protein-coupled-receptor 5. Surprisingly, the apical sodium-dependent BA transporter, which serves to absorb conjugated BAs, was not required for colonic conjugated BA absorption or conjugated BA-induced peptide secretion. In conclusion, we demonstrate that BAs represent a major physiological stimulus for colonic L-cell secretion. NEW & NOTEWORTHY By the use of isolated perfused rodent colon preparations we show that bile acids are potent and direct promoters of colonic glucagon-like-peptide 1 and peptide-YY secretion. The study provides convincing evidence that basolateral Takeda-G protein-coupled-receptor 5 activation is mediating the effects of bile acids in the colon and thus add to the existing literature described for L cells in the ileum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.