An atomic clock based on x-ray fluorescence yields has been used to estimate the mean characteristic time for fusion followed by fission in reactions 238U + 64Ni at 6.6 MeV/A. Inner shell vacancies are created during the collisions in the electronic structure of the possibly formed Z=120 compound nuclei. The filling of these vacancies accompanied by a x-ray emission with energies characteristic of Z=120 can take place only if the atomic transitions occur before nuclear fission. Therefore, the x-ray yield characteristic of the united atom with 120 protons is strongly related to the fission time and to the vacancy lifetimes. K x rays from the element with Z=120 have been unambiguously identified from a coupled analysis of the involved nuclear reaction mechanisms and of the measured photon spectra. A minimum mean fission time τ(f)=2.5×10(-18) s has been deduced for Z=120 from the measured x-ray multiplicity.
The particle-induced X-ray emission (PIXE) of thick biomineral targets provides pertinent surface analysis, but if good reference materials are missing then complementary approaches are required to handle the matrix effects. This is illustrated by our results from qualitative and semiquantitative analysis of biomaterials and calcified tissues in which PIXE usually detected up to 20 elements with Z > 14 per sample, many at trace levels. Relative concentrations allow the classification of dental composites according to the mean Z and by multivariate statistics. In femur bones from streptozotocin-induced diabetic rats, trace element changes showed high individual variability but correlated to each other, and multivariate statistics improved discrimination of abnormal pathology. Changes on the in vitro demineralization of dental enamel suggested that a dissolution of Ca compounds in the outermost layer results in the uncovering of deeper layers containing higher trace element levels. Thus, in spite of significant limitations, standardless PIXE analysis of thick biomineral samples together with proper additional procedures can provide relevant information in biomedical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.