We present VLT/SINFONI imaging spectroscopy of the rest-frame optical emission lines of warm ionized gas in 33 powerful radio galaxies at redshifts z 2, which are excellent sites to study the interplay of rapidly accreting active galactic nuclei and the interstellar medium of the host galaxy in the very late formation stages of massive galaxies. Our targets span two orders of magnitude in radio size (2−400 kpc) and kinetic jet energy (a few 10 46 − almost 10 48 erg s −1 ). All sources have complex gas kinematics with broad line widths up to ∼1300 km s −1 . About half have bipolar velocity fields with offsets up to 1500 km s −1 and are consistent with global back-to-back outflows. The others have complex velocity distributions, often with multiple abrupt velocity jumps far from the nucleus of the galaxy, and are not associated with a major merger in any obvious way. We present several empirical constraints that show why gas kinematics and radio jets seem to be physically related in all galaxies of the sample. The kinetic energy in the gas from large scale bulk and local outflow or turbulent motion corresponds to a few 10 −3 to 10 −2 of the kinetic energy output of the radio jet. In galaxies with radio jet power > ∼ 10 47 erg s −1 , the kinetic energy in global back-to-back outflows dominates the total energy budget of the gas, suggesting that bulk motion of outflowing gas encompasses the global interstellar medium. This might be facilitated by the strong gas turbulence, as suggested by recent analytical work. We compare our findings with recent hydrodynamic simulations, and discuss the potential consequences for the subsequent evolution of massive galaxies at high redshift. Compared with recent models of metal enrichment in high-z AGN hosts, we find that the gas-phase metallicities in our galaxies are lower than in most low-z AGN, but nonetheless solar or even super-solar, suggesting that the ISM we see in these galaxies is very similar to the gas from which massive low-redshift galaxies formed most of their gas. This further highlights that we are seeing these galaxies near the end of their active formation phase.
We report the detection of extended warm ionized gas in two powerful high-redshift radio galaxies, NVSS J210626-314003 at z = 2.10 and TXS 2353-003 at z = 1.49, that does not appear to be associated with the radio jets. This is contrary to what would be expected from the alignment effect, a characteristic feature of distant, powerful radio galaxies at z ≥ 0.6. The gas also has smaller velocity gradients and line widths than most other high-z radio galaxies with similar data. Both galaxies are part of a systematic study of 50 high-redshift radio galaxies with SINFONI, and are the only two that are characterized by the presence of high surface-brightness gas not associated with the jet axis and by the absence of such gas aligned with the jet. Both galaxies are spatially resolved with ISAAC broadband imaging covering the rest-frame R band, and have extended wings that cannot be attributed to line contamination. We argue that the gas and stellar properties of these galaxies are more akin to gas-rich brightest cluster galaxies in cool-core clusters than the general population of high-redshift radio galaxies at z > ∼ 2. In support of this interpretation, one of our sources, TXS 2353-003, for which we have Hα narrowband imaging, is associated with an overdensity of candidate Hα emitters by a factor of ∼8 relative to the field at z = 1.5. We discuss possible scenarios of the evolutionary state of these galaxies and the nature of their emission line gas within the context of cyclical AGN feedback.
Most successful galaxy formation scenarios now postulate that the intense star formation in massive, high-redshift galaxies during their major growth period was truncated when powerful AGNs launched galaxy-wide outflows of gas that removed large parts of the interstellar medium. SINFONI imaging spectroscopy of the most powerful radio galaxies at z ∼ 2 show clear signatures of such winds, but are too rare to be good representatives of a generic phase in the evolution of all massive galaxies at high redshift. Here we present SINFONI imaging spectroscopy of the rest-frame optical emission-line gas in 12 radio galaxies at redshifts ∼2. Our sample spans a range in radio power that is intermediate between the most powerful radio galaxies with known wind signatures at these redshifts and vigorous starburst galaxies, and are about two orders of magnitude more common than the most powerful radio galaxies. Thus, if AGN feedback is a generic phase of massive galaxy evolution for reasonable values of the AGN duty cycle, these are just the sources where AGN feedback should be most important. Our sources show a diverse set of gas kinematics ranging from regular velocity gradients with amplitudes of Δv = 200−400 km s −1 consistent with rotating disks to very irregular kinematics with multiple velocity jumps of a few 100 km s −1 . Line widths are generally high, typically around FWHM = 800 km s −1 , more similar to the more powerful high-z radio galaxies than mass-selected samples of massive high-z galaxies without bright AGNs, and consistent with the velocity range expected from recent hydrodynamic models. A broad Hα line in one target implies a black hole mass of a few 10 9 M . Velocity offsets of putative satellite galaxies near a few targets suggest dynamical masses of a few 10 11 M for our sources, akin to the most powerful high-z radio galaxies. Ionized gas masses are 1−2 orders of magnitude lower than in the most powerful radio galaxies, and the extinction in the gas is relatively low, up to A V ∼ 2 mag. The ratio of line widths, σ, to bulk velocity, v, is so large that even the gas in galaxies with regular velocity fields is unlikely to be gravitationally bound. It is unclear, however, whether the large line widths are due to turbulence or unresolved, local outflows as are sometimes observed at low redshifts. We compare our sources with sets of radio galaxies at low and high redshift, finding that they may have more in common with gas-rich nearby radio galaxies with similar jet power than with the most powerful high-z radio galaxies. Comparison of the kinetic energy with the energy supply from the AGNs through jet and radiation pressure suggests that the radio source still plays a dominant role for feedback, consistent with low-redshift radio-loud quasars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.