p38 mitogen-activated protein kinases (p38-MAPKs) are activated by cytokines, cellular stresses, growth factors, and hormones. We show here that p38-MAPKs are activated upon stimulation by thyroid-stimulating hormone (TSH) or cAMP. TSH caused the phosphorylation of p38-MAPK in Chinese hamster ovary cells stably transfected with the human TSH receptor but not in wild-type Chinese hamster ovary cells. The effect of TSH was fully mimicked by the adenylyl cyclase activator, forskolin, and by a permeant analog of cAMP. The effect of forskolin was reproduced in FRTL5 rat thyroid cells. TSH also stimulated the phosphorylation of MAPK kinase 3 or 6, over the same time scale as that of p38-MAPKs. TSH and forskolin stimulated the activity of the ␣-isoform of p38-MAPK assayed by phosphorylation of the transcription factor ATF2. The activity of MAPKactivated protein kinase-2 was stimulated by TSH and forskolin. This stimulation was abolished by SB203580, a specific inhibitor of p38-MAPKs. The protein kinase A inhibitor H89 inhibited the stimulation of phosphorylation of p38-MAPKs by forskolin, whereas inhibitors of protein kinase C, p70S6k , and phosphatidylinositol 3-kinase were ineffective. Expression of the dominant negative form of Rac1, but not that of Ras, blocked forskolin-induced p38-MAPK activation. Diphenylene iodonium, a potent inhibitor of NADPH oxidase(s), and ascorbic acid, an effective free radical scavenger, suppressed TSH-or forskolin-stimulated p38-MAPK phosphorylation, indicating that the generation of reactive oxygen species plays a key role in signaling from cAMP to p38-MAPKs. Inhibition of the p38-MAPK pathway with SB203580 partially but significantly, attenuates cAMP-and TSH-induced expression of the sodium iodide symporter in FRTL-5 cells. These results point to a new signaling pathway for the G s -coupled TSH receptor, involving cAMP, protein kinase A, Rac1, and reactive oxygen species and resulting in the activation of a signaling kinase cascade that includes MAPK kinase 3 or 6, p38-MAPK, and MAPK-activated protein kinase-2.The activation of mitogen-activated protein kinases (MAPKs) 1 is a key event in many cellular processes, including proliferation, differentiation, and apoptosis (1). There are three main classes of MAPK, extracellular signal-regulated protein kinases (ERKs) (2, 3), stress-activated protein kinases, also known as c-Jun NH 2 -terminal protein kinases (JNKs) (4, 5), and p38-MAPKs (6 -11). p38-MAPKs ␣, , ␥, and ␦ are activated by the dual phosphorylation of threonine and tyrosine residues within the tripeptide motif TGY (12) by MAP kinase kinases termed MKK3 and MKK6, themselves activated by phosphorylation (13). The p38-MAPKs phosphorylate other protein kinases, such as MAPKAP kinase-2/3 (14, 15) and transcription factors, such as ATF2, Elk1, MEF2,. The pyridinylimidazole compounds SB203580 and SB202190 are very specific inhibitors of p38␣-and p38-MAPKs (21, 22). The Rho family GTPases Rac1 and CDC42 and the STE20-related protein kinases PAK1, PAK3, and germinal center kinase ...
Although cholera toxin induces a marked stimulation of adenylate cyclase activity in rat adipocyte plasma membranes, the holotoxin induces only a slight increase of cyclic AMP accumulation in intact cells. A similar apparent anomaly is seen with pertussis toxin, which has been shown to inhibit the Gi subunit of adenylate cyclase, and has a greater effect on cAMP accumulation and lipolysis than the activation by cholera toxin of the Gs subunit. To understand better the way in which these bacterial toxins are modifying the adipocyte cells, we prepared adipocyte plasma membranes and submitted them to ADP-ribosylation by cholera and pertussis toxins. During the incubation of control cells, we found endogenous ADP-ribosylation of Gs as a result of sustained stimulation of Gi by adenosine. Our results point to a possible homoeostatic system in which the autonomous adjustment of the basal activity of Gs as a function of that of Gi, under the control of feedback inhibitory ligands, ensures a steady production of cAMP within the cell.
Objective: Thyrotropin activates the cAMP pathway in thyroid cells, and stimulates cell cycle progression in cooperation with insulin or insulin-like growth factor-I. Because p38 mitogen-activated protein kinases (p38 MAPKs) were stimulated by cAMP in the FRTL-5 rat thyroid cell line, we investigated (i) the effect of the specific inhibition of p38 MAPKs on FRTL-5 cell proliferation and (ii) the mechanism of action of p38 MAPKs on cell cycle control, by studying the expression and/or the activity of several cell cycle regulatory proteins in FRTL-5 cells. Methods: DNA synthesis was monitored by incorporation of [ 3 H]thymidine into DNA and the cell cycle distribution was assessed by fluorescence-activated cell sorter analysis. Expression of cell cycle regulatory proteins was determined by Western blot analysis. Cyclin-dependent kinase 2 (Cdk2) activity associated to cyclin E was immunoprecipitated and was measured by an in vitro kinase assay. Results: SB203580, an inhibitor of a and b isoforms of p38 MAPKs, but not its inactive analog SB202474, inhibited DNA synthesis and the G1-S transition induced by forskolin plus insulin. SB203580 inhibited specifically p38 MAPK activity but not other kinase activities such as Akt and p70-S6 kinase. Treatment of FRTL-5 cells with SB203580 decreased total and cyclin E-associated Cdk2 kinase activity stimulated with forskolin and insulin. However, inhibition of p38 MAPKs by SB203580 was without effect on total cyclin E and Cdk2 levels. The decrease in Cdk2 kinase activity caused by SB203580 treatment was not due to an increased expression of p21Cip1 or p27 Kip1 inhibitory proteins. In addition, SB203580 affected neither Cdc25A phosphatase expression nor Cdk2 Tyr-15 phosphorylation. Inhibition of p38 MAPKs decreased Cdk2-cyclin E activation by regulating the subcellular localization of Cdk2 and its phosphorylation on Thr-160. Conclusions: These results indicate that p38 MAPK activity is involved in the regulation of cell cycle progression in FRTL-5 thyroid cells, at least in part by increasing nuclear Cdk2 activity. 153 123-133 European Journal of Endocrinology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.