We recently isolated the r-PTPeta gene, which encodes a receptor-type tyrosine phosphatase protein that suppresses the neoplastic phenotype of retrovirally transformed rat thyroid cells. The human homologue gene PTPRJ/DEP-1 is deleted in various tumors. Moreover, the Gln276Pro polymorphism, located in the extracellular region of the gene, seems to play a critical role in susceptibility to some human neoplasias. Here we report the loss of heterozygosity (LOH) of PTPRJ in 11/76 (14.5%) informative thyroid tumors (including adenomas and carcinomas). We also looked for the Gln276Pro, Arg326Gln and Asp872Glu polymorphisms in exons 5, 6 and 13 of PTPRJ in 88 patients with thyroid tumors and in 54 healthy individuals. We found that the PTPRJ genotypes homozygous for the Gln276Pro and Arg326Gln polymorphisms, and the Asp872 allele were more frequent in thyroid carcinoma patients than in healthy individuals (P ¼ 0.032). In addition, PTPRJ LOH was more frequent in thyroid carcinomas of heterozygotes for Gln276Pro and Arg326Gln compared with homozygotes (P ¼ 0.006). This suggests that the presence of hemizygosity for these polymorphisms in the tumor facilitates tumor progression. These results indicate that the genotypic profile of PTPRJ affects susceptibility to thyroid carcinomas, and that allelic loss of this gene is involved in thyroid carcinogenesis.
Primary hyperparathyroidism (pHPT) is a common endocrine disease that in more than 95% of cases is sporadic and only in some cases is caused by inherited disorders, isolated or as part of multiple endocrine neoplasia (MEN1 and 2). Somatic mutations of MEN1 gene have also been described in sporadic parathyroid tumors. In our study, we examined the presence of alterations in MEN1 gene in a series of 39 patients who had undergone surgery for sporadic pHPT (35 with parathyroid adenoma or hyperplasia, 4 with a carcinoma). A genotype-phenotype correlation was also analysed. After DNA extraction from paraffin-embedded tissues, we amplified by PCR and sequenced the exons 2-10 of the MEN1 gene. Somatic MEN1 mutations were detected in 6 of the 35 patients with a benign parathyroid lesion examined (17.1%), whereas no alterations were found in the carcinomas. Four novel MEN1 gene mutations were identified as follows: one frameshift mutation (222insT, exon 2), one frameshift deletion (912delTA, exon 5), one in-frame deletion (835del18, exon 4) and one missense mutation (P291A, exon 6). In addition, one missense mutation (L89R, exon 2) and one nonsense mutation (Q536X, exon 10) were previously reported. Moreover, two polymorphisms were also found: one allele carried a R171Q polymorphism (1/39 tumors), while a D418D polymorphism (GAC/GAT) was found in 15 and 8 tumors in hetero (CT) and homozygosity (TT), respectively. In no case (mutations and/or polymorphisms) did we find a genotype-phenotype correlation. In conclusion, our data demonstrate the presence of somatic alterations of the MEN1 tumor suppressor gene in about one fifth of benign sporadic parathyroid tumors. The absence of a genotype-phenotype correlation, however, suggests the involvement of other genetic/epigenetic factors for the full expression of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.