A new Reynolds equation, based on the Eyring theory of non-Newtonian flow, is derived for flow in one dimension. It is shown that this new equation reduces to the traditional Reynolds equation as the Eyring model approaches the Newtonian model in the limit. Numerical solutions are presented for a selected oil at two different temperatures. The central film thickness decreases with increasing dimensionless viscosity parameter and slide/roll ratios. A transition zone is noted through which the ratio of minimum to central film thickness passes as the pressure distribution goes from near Hertzian to a distribution that appreciably deviates from Hertzian.
The effects of lubricant rheology and surface kinematic conditions on micro-elastohydrodynamic (EHD) lubrication are analyzed under isothermal line-contact conditions. Micro-EHD lubrication is modeled by introducing a surface irregularity in the form of an asperity or a furrow into the contact zone. Under simple sliding conditions, the pressure generated in the vicinity of the irregularity and the resulting surface deformation depend strongly on the lubricant rheology. The surface kinematic conditions have profound effects on micro-EHD lubrication. In general, a stationary surface irregularity produces a relatively strong downstream effect when it is in the inlet region of the contact, and a moving surface irregularity produces a relatively strong upstream effect after it enters the Hertzian central region. The simulated results agree qualitatively with previous experimental measurements and observations.
A full line contact solution, under isothermal conditions, is obtained in which the effects of single stationary surface irregularities on the EHD lubrication process are studied under pure sliding conditions. The irregularities studied are furrows, furrows with built-up edges, and asperities. The effects of these irregularities on film thickness, pressure, and subsurface octahedral shear stress are presented. The pressure and film thickness resulting from such surface irregularities are significantly changed from their smooth surface values. These changes alter the state of stress in the subsurface region by increasing the maximum value of octahedral shear stress and bringing the location of this maximum stress closer to the surface. The film thickness in the contact is significantly changed from the smooth surface value only when the irregularities are located in the inlet region while the maximum value of the octahedral shear stress increases to the greatest extent when the irregularities are located in the outlet half of the contact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.