A high-resolution spectrometer aimed at performing experiments of inelastic X-ray scattering by electronic excitations is described. The spectrometer has been installed at the D12A-XRD1 beamline of the National Synchrotron Light Laboratory (LNLS), in Campinas, Brazil. Synchrotron radiation is monochromated to about 6 keV and focused horizontally onto the sample by a sagittally focusing Si(111) double-crystal monochromator in non-dispersive setting. The spectrometer operates in Rowland circle geometry and is based on a focusing Si(333) analyser in near-backdiffraction geometry for energy analysis of inelastically scattered photons. The analyser works at a fixed Bragg angle, so energy transfers are obtained by varying the incident photon energy. A relative energy resolution of the whole spectrometer of approximately 1.5 x 10(-4) at 5.93 keV has been achieved. As an example of application, inelastic X-ray scattering by plasmon excitation in polycrystalline Be was measured. Test results demonstrate that inelastic X-ray scattering experiments with eV energy resolution and an acceptable counting rate are feasible at the LNLS when focused on plasmon and particle-hole excitations.
The linear thermal expansion coefficient of diamond has been measured using forward-diffracted profiles in X-ray backscattering. This experimental technique is presented as an alternative way of measuring thermal expansion coefficients of solids in the high-resolution Bragg backscattering geometry without the intrinsic difficulty of detecting the reflected beam. The temperature dependence of the lattice parameter is obtained from the high sensitivity of the transmitted profiles to the Bragg angle variation with temperature. The large angular width of the backscattering profiles allows the application of this technique to mosaic crystals with high resolution. As an application of this technique the thermal expansion coefficient of a synthetic type-Ib diamond (110) single crystal was measured from 10 to 300 K. Extremely low values (of the order of 1 x 10(-7) +/- 5 x 10(-7)) for the linear thermal expansion coefficient in the temperature range from 30 to 90 K are in good agreement with other reported measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.