debated [11,12,14,15], but less research has been devoted to the effect of oyster reefs on the surrounding sediment. Reefs act to attenuate wave energy, possibly facilitating deposition of fine sediment [8]; this process may work in concert with oyster filtration to increase light penetration that may then shift ecosystems towards more benthic primary producers [6]. Finer particles and much higher organic matter (OM) content in oyster-associated sediments suggests a substantial role for carbon and nutrient removal by burial [8,17] and benthic algal uptake where light penetration is sufficient [6]. However, mesocosm experiments show that physical factors such as bottom shear can influence sediment resuspension and benthic micro-algal biomass, making the system more complex and the likelihood of OM burial versus remineralization more difficult to predict [7]. Several recent studies suggest that sediments associated with natural and restored oyster reefs have high rates of denitrification and may thus represent important sites for long term nitrogen removal [17][18][19][20]. Whole-creek studies and some mesocosm studies do not parse the contributions of the oysters themselves versus the associated sediments but rather consider the reef-sediment system as a whole [3,5,17]. Indeed, it is difficult to separate these effects because the presence of the reef will likely alter the depositional environment and ultimately the biogeochemistry of the surrounding sediment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.