It is well-known that discrete-time finite-state Markov Chains, which are described by onesided conditional probabilities which describe a dependence on the past as only dependent on the present, can also be described as one-dimensional Markov Fields, that is, nearestneighbor Gibbs measures for finite-spin models, which are described by two-sided conditional probabilities. In such Markov Fields the time interpretation of past and future is being replaced by the space interpretation of an interior volume, surrounded by an exterior to the left and to the right. If we relax the Markov requirement to weak dependence, that is, continuous dependence, either on the past (generalising the Markov-Chain description) or on the external configuration (generalising the Markov-Field description), it turns out this equivalence breaks down, and neither class contains the other. In one direction this result has been known for a few years, in the opposite direction a counterexample was found recently. Our counterexample is based on the phenomenon of entropic repulsion in long-range Ising (or "Dyson") models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.