Biodiesel synthesis was carried out via heterogeneous catalysis of canola oil with nanoparticles of a mixed oxide based on rare earths. The catalyst synthesis (NdAlO3) was carried out based on the method proposed by Pechini for the synthesis of nanoparticles. Thermogravimetric analysis-differential thermal analysis (TGA-DTA) analysis was performed on the nanoparticle precursor gel in order to establish the optimum conditions for its calcination, with these being of 800 °C over 24 h. A pure NdAlO3 compound with an approximate size of 100 nm was obtained. The products of the transesterification reaction were analyzed using gas chromatography, FTIR, and NMR. The optimum reaction conditions were determined, namely, the temperature effect, reaction time, methanol:oil mass ratio, and recyclability of the catalyst. These studies showed the following optimal conditions: 200 °C, 5 h, methanol:oil mass ratio of 6:1, and a constant decrease in the catalytic activity of the catalyst was observed for up to six reuses, which later remained constant at around a 50% conversion rate. The maximum biodiesel yield obtained with the optimum conditions was around 75%. Analysis of the reaction products showed that the residual oil showed a chemical composition different from that of the source oil, and that both the biodiesel and glycerol obtained were of high purity.
Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.
ZnO-based ceramic varistors have shown excellent electrical and dielectric properties due to their characteristics microstructures represented by the arrangement of their grains and grain boundaries that allow the absorption and flow of energy when subjected to an electrical surge. Their properties and characteristics depend on their chemical compositions and processing routes. Typical processing routes involve several stages of grinding and precalcination—which are time consuming processes. Because of this, this study proposes a simpler and cheaper alternative route for processing ceramic varistors. The alternative process proposed is the mixing of the precursor oxides by means of a hydrothermal treatment. The characteristics and properties of the synthesized ceramic varistors were evaluated by means of scanning electron microscopy, X-ray diffraction and impedance spectroscopy, considering the effect of the addition of rare earth oxides (La2O3, CeO2 and Nd2O3). The results showed that the mixing of the oxides through hydrothermal treatment produces ceramic varistors with characteristics and properties similar to those obtained by other processing routes. Furthermore, it was observed that the addition of rare earth oxides affects the characteristics and properties of the ceramic varistor depending on the type of rare earth oxide added, its concentration and ionic radius.
This study reports the behavior of the Ni20Cr alloy in molten nitrate salts. Its behavior was evaluated in the eutectic mixture called Solar Salt (binary salt) and in a ternary mixture (90% Solar Salt and 10% lanthanum nitrate). The addition of lanthanum nitrate was performed to determine if the presence of the La3+ cation could act as a corrosion inhibitor. Through mass loss and potentiodynamic polarization studies, the effects of both electrolytes on the corrosion resistance of the alloy at 300, 400, and 500 °C and at exposure times of 250, 500, 750, and 1000 h were determined. The results showed an increase in the corrosivity of the ternary salt, due to a decrease in its melting point and an increase in the concentration of nitrate ions. However, it was observed that the La3+ cations formed a protective layer (La2O3) on the alloy surface. In both corrosive media, the Ni20Cr alloy showed excellent corrosion resistance, due to its ability to form protective layers of Cr2O3, NiO, and NiCr2O4, in addition to the presence of a layer of La2O3 in the case of the ternary salt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.