The large amplitude vibrations of a thin-walled cylindrical shell are analyzed using the Donnell's shallow-shell equations. A perturbation method is applied to reduce the nonlinear partial differential equations into a system of linear partial differential equations. The simply-supported boundary condition and the circumferential periodicity condition are satisfied. The resulting solution indicates that in addition to the fundamental modes, the response contains asymmetric modes as well as axisymmetric modes with the frequency twice that of the fundamental modes. In the previous investigations in which the Galerkins procedure was applied, only the additional axisymmetric modes were assumed. Vibrations involving a single driven mode response are investigated. The results indicate that the nonlinearity is either softening or hardening depending on the mode. The vibrations involving both a driven mode and a companion mode are also investigated. The region where the companion mode participates in the vibration is obtained and the effects due to the participation of the companion mode are studied. An experimental investigation is also conducted. The results are generally in agreement with the theory. IINon-stationary' response is detected at some frequencies for large amplitude response where the amplitude drifts from one value to another. Various nonlinear phenomena are observed and quantitative comparisons with the theoretical results are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.