The evidence that Kupffer cells are capable of controlling metastatic growth in the liver in vivo is largely circumstantial. The best approach when studying natural cytotoxicity activities of Kupffer cells is to investigate the effect of Kupffer cell elimination on tumour growth. Until now it has not been possible to eliminate Kupffer cells without affecting other cell populations. We have recently developed a new method to eliminate Kupffer cells selectively: intravenous injection of liposome-encapsulated (dichloromethylene)bisphosphonate (Cl2MDP-liposomes) leads to effective elimination of all Kupffer cells, without affecting non-phagocytic cells. Wag/Rij rats were injected with Cl2MDP-liposomes. After 48 h, rats were inoculated with syngeneic CC531 colon carcinoma cells by injection in the portal system. The results show a strongly enhanced tumour growth in the liver of the Cl2MDP-liposome-treated rats. In these animals, livers were almost completely replaced by tumour and had increased in weight, whereas in the control groups only a few (four to eight) small (1-mm) tumour nodules were found. These data show that selective elimination of Kupffer cells results in enhanced tumour growth in the liver, implying that Kupffer cells play a crucial role in controlling tumour growth in the liver.
We have successfully established highly enriched astrocyte cultures upon passaging of primary cultures derived from various regions of postmortem human adult brain and spinal cord. Tissues were collected at autopsies with relatively short postmortem times (3-9 hr) from multiple sclerosis (MS) and (normal) control cases. Immunocytochemical analysis showed that primary cultures were composed of colonies of oligoclonal cells that expressed the intermediate filament proteins glial fibrillary acidic protein (GFAP), vimentin, as well as glutamine synthetase (GS). Passaging the astrocytes did not affect their proliferating capacity as monitored by bromodeoxyuridine (BrdU) incorporation. Astrocyte-specific markers were stably expressed for at least 12 passages per individual tissue sample. Large numbers of GFAP-positive astrocytes were obtained from each sample and could be stored frozen and recultured. Very few macrophages/microglial cells (1-3%) were present in the human adult astrocyte cultures, using a panel of macrophage-specific markers. However, the monoclonal antibodies (mAbs KP1, EBM1, 25F9) and lysozyme antiserum directed against lysosomal antigens strongly immunostained cultured astrocytes derived from MS and control cases, implicating that expression of these lysosomal antigens is not restricted to macrophages/ microglial cells in human glial cell cultures. Interestingly, astrocytes derived from active demyelinated MS lesions showed an increased proliferating capacity compared to astrocytes derived from non-lesioned and normal brain and spinal cord regions, as shown with a microculture tetrazolium assay (MTT assay).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.