An experimental study is combined with numerical modelling to investigate new ways to reduce crossflow vibrations of hydraulic gates with underflow. A rectangular gate section placed in a flume was given freedom to vibrate in the vertical direction. Holes in the gate bottom enabled leakage flow through the gate to enter the area directly under the gate which is known to play a key role in most excitation mechanisms. For submerged discharge conditions with small gate openings the vertical dynamic support force was measured in the reduced velocity range 1.5 < Vr < 10.5 for a gate with and without holes. The leakage flow through the holes significantly reduced vibrations. This attenuation was most profound in the high stiffness region at 2 < Vr < 3.5. Two-dimensional numerical simulations were performed with the Finite Element Method to assess local velocities and pressures for both gate types. A moving mesh covering both solid and fluid domain allowed free gate movement and two-way fluid-structure interactions. Modelling assumptions and observed numerical effects are discussed and quantified. The simulated added mass in still water is shown to be close to experimental values. The spring stiffness and mass factor were varied to achieve similar response frequencies at the same dry natural frequencies as in the experiment. Although it was not possible to reproduce the vibrations dominated by impinging leading edge vortices (ILEV) at relatively low Vr, the simulations at high Vr showed strong vibrations with movement-induced excitation (MIE). For the latter case, the simulated response reduction of the ventilated gate agrees with the experimental results. The numerical modelling results suggest that the leakage flow diminishes the whipping effect of fluctuations at the trailing edge associated with the streamwise pressure drop across the gate and the body's vertical oscillatory motion.
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. ABSTRACT: Operation of flood barrier gates is sometimes hampered by flow-induced vibrations. Although the physics is understood for specific gate types, it remains challenging to judge dynamic gate behaviour for unanticipated conditions. This paper presents a hybrid modelling system for predicting vibrations by combining machine learning with physics-based modelling so that critical situations can be avoided. In the outlined data-driven approach gate response data is acquired by sensors and stored in a database. For an underflow gate under submerged flow conditions, gate opening and "reduced velocity" are the attributes for classification into safe and unsafe situations. Results from physical scale model tests are used to illustrate the proposed technique. A finite-element model for computational fluid-structure interaction simulations, presently under development, is applied to provide complementary input to the system's database. The system described in this paper contributes to safer gate control and can become a useful aid in flood barrier management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.