We report for the first time that -naphthoflavone (BNF) abolishes ACTH stimulation of cortisol production in rainbow trout (Oncorhynchus mykiss). There was significantly higher hepatic cytochrome P450 content and ethoxyresorufin O-de-ethylase and uridine-5 -diphosphoglucuronic acid transferase activities in BNFtreated fish than in sham-treated controls. BNF did not significantly effect either plasma turnover or tissue distribution of [ 3 H]cortisol-derived radioactivity. Hepatic membrane fluidity and hepatocyte capacity for cortisol uptake were not altered by BNF as compared with the sham-treated fish. These results taken together suggest that BNF does not affect cortisol-clearance mechanisms in trout. A 3 min handling disturbance period elicited a plasma cortisol response in the sham-treated fish; however, the response in the BNF-treated fish was muted and significantly lower than in the sham fish. This in vivo response corroborates the lack of interrenal sensitivity to ACTH in vitro in the BNF-treated fish, suggesting that BNF affects the ACTH pathway in trout. Our results suggest the possibility that cytochrome P450-inducing compounds may affect cortisol dynamics by decreasing interrenal responsiveness to ACTH stimulation in fish, thereby impairing the physiological responses that are necessary for the animal to cope with the stressor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.