Animal feeding studies were conducted with rats, broiler chickens, catfish and dairy cows as part of a safety assessment program for a soybean variety genetically modified to tolerate in-season application of glyphosate. These studies were designed to compare the feeding value (wholesomeness) of two lines of glyphosate-tolerant soybeans (GTS) to the feeding value of the parental cultivar from which they were derived. Processed GTS meal was incorporated into the diets at the same concentrations as used commercially; diary cows were fed 10 g/100 g cracked soybeans in the diet, a level that is on the high end of what is normally fed commercially. In a separate study, laboratory rats were fed 5 and 10 g unprocessed soybean meal 100 g diet. The study durations were 4 wk (rats and dairy cows), 6 wk (broilers) and 10 wk (catfish). Growth, feed conversion (rats, catfish, broilers), fillet composition (catfish), and breast muscle and fat pad weights (broilers) were compared for animals fed the parental and GTS lines. Milk production, milk composition, rumen fermentation and nitrogen digestibility were also compared for dairy cows. In all studies, measured variables were similar for animals fed both GTS lines and the parental line, indicating that the feeding value of the two GTS lines is comparable to that of the parental line. These studies support detailed compositional analysis of the GTS seeds, which showed no meaningful differences between the parental and GTS lines in the concentrations of important nutrients and antinutrients. They also confirmed the results of other studies that demonstrated the safety of the introduced protein, a bacterial 5-enolpyruvyl-shikimate-3-phosphate synthase from Agrobacterium sp. strain CP4.
Conversion of 2-hydroxy-4-(methylthio)butanoic acid (HMB) to L-methionine (L-Met) was studied by using chick liver homogenates. The first step was found to be stereospecific with different enzymes for the D- and L-isomers of HMB. L-HMB was the substrate for L-2-hydroxy acid oxidase, a peroxide-producing flavo-enzyme found in peroxisomes of liver and kidney. The enzyme for D-HMB, identified as mitochondrial D-2-hydroxy acid dehydrogenase, had not been previously described in the chick. This enzyme was found in every tissue tested including intestinal mucosa and skeletal muscle. Thus, D-HMB could be used by any organ for protein synthesis, like L-Met itself. These results provide a biochemical explanation of equimolar incorporation of HMB and DL-methionine (DL-Met) into chick hepatocyte protein in that the two HMB enzymes can simultaneously convert both HMB isomers to L-Met while only one enzyme, D-2-amino acid oxidase, converts D-Met to L-Met.
The objective of this research was to determine the efficacy of 2 types of adsorbents [hydrated sodium calcium aluminosilicates (HSCAS) vs. a combination of clay and yeast cell wall] in preventing aflatoxicosis in broilers. A total of 275 one-day-old birds were randomly divided into 11 treatments, with 5 replicate pens per treatment and 5 chicks per pen. The 11 treatments included 3 diets without any adsorbent containing either 0, 1, or 2 mg/kg of aflatoxin B1 (AFB1) plus 8 additional treatments employing 2 dietary levels of AFB1 (1 or 2 mg/kg), 2 different adsorbents [Solis (SO) and MTB-100 (MTB)], and 2 different levels of each absorbent (0.1 and 0.2%) in a 2×2×2 factorial arrangement. Solis is a mixture of different HSCAS and MTB is a combination of clay and yeast cell wall. Feed and water were provided ad libitum throughout the 21-d study period. Body weight gain and feed intake were depressed and relative liver weight was increased in chicks fed AFB1 compared with the positive control (P<0.05). Severe liver damage was observed in chicks fed 2 mg/kg of AFB1 with lesions consistent with aflatoxicosis, including fatty liver and vacuolar degeneration. Serum glucose, albumin, total protein, Ca, P, and alkaline phosphatase concentrations were reduced by AFB1 (P<0.05). The addition of either SO or MTB ameliorated the negative effects of 1 mg/kg of AFB1 on growth performance and liver damage (P<0.05). However, supplemental MTB failed to diminish the negative effects of 2 mg/kg of AFB1, whereas SO was more effective compared with MTB at 2 mg/kg of AFB1 (P<0.05). These data indicate that the HSCAS product effectively ameliorated the negative effect of AFB1 on growth performance and liver damage, whereas the yeast cell wall product was less effective especially at the higher AFB1 concentration.
Ruminal escape of various amounts of methionine hydroxy analog [D,L-2-hydroxy-4-(methylthio)-butanoic acid (HMB)] was measured in an experiment designed as a 4 x 4 Latin square using four lactating dairy cows with cannula in the rumen and duodenum. The cows were fed a diet composed of corn silage, alfalfa haylage, rolled barley grain, canola meal, and blood meal, three times per day. The cows were fed the liquid analog each day for 1 wk before the experiment was started. On the day of the experiment, each cow received an intraruminal bolus dose of 0, 25, or 50 g of the liquid analog (Alimet feed supplement, 88% HMB) or 51.2 g of a dry calcium salt of the analog (86% HMB; MHA) mixed with 0.5 kg of ground barley grain. A liquid phase marker (Co-EDTA) was administered as a bolus dose into the rumen at the time of administration of the methionine hydroxy analogs. Rumen and duodenal contents, and blood serum were collected at 0, 1, 3, 6, 9, 12, and 24 h relative to the time of dosing. Rumen and duodenal samples were analyzed for Co and HMB, and serum was analyzed for free methionine. Fractional rate constants for the passage of the liquid marker (k(p)) and the decline of HMB concentration in the rumen (k(rHMB)) were determined by nonlinear regression. Liquid passage from the rumen was similar among the four analog treatments (0.136 +/- 0.012/h; mean +/- SEM). Ruminal escape of HMB as a percentage of the dose (100% x k(p)/k(rHMB)) did not differ between cows receiving 25, 50, and 51.2 g of the methionine analogs (42.5, 41.0, and 34.9 +/- 9.0%, respectively) and averaged 39.5%. Duodenal appearance of HMB as a percentage also did not differ between cows receiving 25, 50, and 51.2 g of the methionine analogs (16.2, 26.8, and 22.7%, respectively) and averaged 22%. Omasal absorption of HMB was variable ranging from 12.3 to 26.3% and averaged 17.6%. Serum methionine concentration peaked at 3 and 6 h after dosing and increased in proportion to the amount of the analog administered. It was concluded that 39.5% of the methionine hydroxy analog escaped rumen degradation, the percentage of the dose that escaped the rumen was not affected by the amount or form of the methionine analog fed, and the analog that escaped ruminal degradation was likely absorbed and metabolized to methionine.
Three experiments were conducted to determine the true ileal digestible (TID) Lys and sulfur AA (SAA) requirement and to compare the bioefficacy of 2-hydroxy-4-(methylthio)butanoic acid (HMTBA) and dl-MET as Met sources in nursery pigs. Experiment 1 included 2 studies: 1 was 662 nursery pigs (Triumph 4 x PIC C22; initial BW 12.2 +/- 0.18 kg) allotted to 1 of 5 dietary treatments with TID Lys concentrations ranging from 1.10 to 1.50%; and the second study was 665 nursery pigs (Triumph 4 x PIC C22; initial BW 12.3 +/- 0.18 kg) allotted to 1 of 5 dietary treatments with TID SAA concentration ranging from 0.63 to 0.90%. In Exp. 2, 638 nursery pigs (Triumph 4 x PIC C22; initial BW 13.0 +/- 0.16 kg) were allotted to the same 5 SAA dietary treatments as in Exp. 1. In Exp. 3, 1,232 pigs (Triumph 4 x PIC C22; initial BW 11.0 +/- 0.30 kg) were allotted to 1 of 7 dietary treatments. The basal diet (diet 1) was supplemented with high concentrations of synthetic AA but no Met; this resulted in a dietary concentration of TID Lys of 1.30% and TID SAA of 0.50%. Diets 2 to 7 were the basal diet supplemented with 3 equimolar levels of HMTBA or dl-MET to provide TID SAA concentrations of 0.56, 0.62, and 0.68%, respectively. In Exp. 1, increasing TID Lys from 1.10 to 1.50% increased ADG (quadratic; P < 0.05) and improved G:F (linear; P < 0.002). The pooled data of Exp. 1 (SAA study) and Exp. 2 indicated that increasing TID SAA from 0.63 to 0.90% increased ADG (quadratic; P < 0.01) and improved G:F (quadratic; P < 0.01). Various methods of analyzing the growth response surface indicated that the optimal TID Lys concentration ranged from 1.28 to 1.32% for ADG (Exp. 1), and the optimal TID SAA concentration ranged from 0.73 to 0.77% for ADG and 0.80 to 0.83% for G:F (pooled Exp. 1 and 2), respectively. In Exp. 3, increasing TID SAA concentrations from 0.50 to 0.68% resulted in a linear improvement of ADG (P < 0.001), ADFI (P < 0.05), and G:F (P < 0.001). The best fit comparison of HMTBA and dl-MET was determined by the Schwartz Bayesian Information Criteria index, which indicated the average relative efficacy of HMTBA vs. dl-MET was 111%, with 95% confidence interval of 83 to 138%, within the range of TID SAA tested. Thus, the TID Lys and SAA requirements of modern lean-genotype pigs from 11- to 26-kg were greater than the 1998 NRC recommendations, and both HMTBA and dl-MET as Met sources can supply equimolar amounts of Met activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.