In the present work, we used the steam explosion method for the isolation of cellulose nanofiber (CNF) from Cuscuta reflexa, a parasitic plant commonly seen in Kerala and we evaluated its reinforcing efficiency in natural rubber (NR). Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Thermogravimetric analysis (TGA) techniques indicated that type I cellulose nanofibers, with diameter: 10–30 nm and a 67% crystallinity index were obtained by the proposed method. The results showed that application of CNF in NR based nanocomposites resulted in significant improvement of their processing and performance properties. It was observed that the tensile strength and tear strength of NR/CNF nanocomposites are found to be a maximum at 2 phr CNF loading, which corresponds with the studies of equilibrium swelling behavior. Dynamic mechanical analysis, thermogravimetric analysis, and morphological studies of tensile fractured samples also confirm that CNF isolated from Cuscuta reflexa plant can be considered as a promising green reinforcement for rubbers.
Acacia caesia (L.) Willd (soap bark) fiber is an abundant natural resource, that is rich in cellulose. The study reports the effective utilization of underutilized Acacia caesia fiber for the isolation of nanocellulose whiskers. The nanocellulose whiskers were isolated successfully from Acacia caesia fibers by following alkali, bleaching, and sulfuric acid treatment. The obtained nanocellulose whiskers were carefully investigated for its chemical composition, structure, morphology, crystallinity, and thermal stability. The chemical composition and Fourier transform infrared spectra of nanocellulose whiskers showed the elimination of the non‐cellulosic parts present in the raw Acacia caesia fibers. The X‐ray diffraction analysis showed an upsurge in the crystallinity of the cellulose fibers after the chemical treatments. The isolation of nanocellulose whiskers from Acacia caesia raw fiber was confirmed by electron microscopy analysis. The thermogravimetric analysis showed remarkably high char residue for the nanocellulose whiskers compared to raw fibers. Based on the properties of nanocellulose whiskers, it can be concluded that the nanocellulose whiskers produced from Acacia caesia raw fibers are potential reinforcing material for developing high‐performance green composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.