The extensive availability of advanced digital image technologies and image editing tools has simplified the way of manipulating the image content. An effective technique for tampering the identification is the copy-move forgery. Conventional image processing techniques generally search for the patterns linked to the fake content and restrict the usage in massive data classification. Contrastingly, deep learning (DL) models have demonstrated significant performance over the other statistical techniques. With this motivation, this paper presents an Optimal Deep Transfer Learning based Copy Move Forgery Detection (ODTL-CMFD) technique. The presented ODTL-CMFD technique aims to derive a DL model for the classification of target images into the original and the forged/tampered, and then localize the copy moved regions. To perform the feature extraction process, the political optimizer (PO) with Mobile Networks (MobileNet) model has been derived for generating a set of useful vectors. Finally, an enhanced bird swarm algorithm (EBSA) with least square support vector machine (LS-SVM) model has been employed for classifying the digital images into the original or the forged ones. The utilization of the EBSA algorithm helps to properly modify the parameters contained in the Multiclass Support Vector Machine (MSVM) technique and thereby enhance the classification performance. For ensuring the enhanced performance of the ODTL-CMFD technique, a series of simulations have been performed against the benchmark MICC-F220, MICC-F2000, and MICC-F600 datasets. The experimental results have demonstrated the improvised performance of the ODTL-CMFD approach over the other techniques in terms of several evaluation measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.