The measurement of acetylcholinesterase (AChE) activity is used worldwide as a biomarker of environmental contamination due to neurotoxic substances. In the present study the AChE activities was measured in marine snails (Cronia contracta) collected seasonally from six sampling sites (viz. Arambol, Anjuna, Dona Paula, Vasco, Velsao and Palolem) along the Goa coast during the pre-monsoon (April, 2004), monsoon (September, 2004) and post-monsoon (November, 2004) periods. The AChE activities in C. contracta showed wide variation along the Goa coast. It was found to be quite high at the reference site, Palolem (23.97, 21.72 and 24.85) throughout the sampling period (April-November, 2004). The AChE activities in C. contracta decreased significantly at Vasco (44.6-52.4% reduction) followed by Dona Paula (24.9-36.2% reduction), Velasao (10.8-35.9% reduction), Arambol (12.6-37.3% reduction) and Anjuna (0-12.7% reduction). Such a significant variation of AChE activities in the marine snail along the Goa coast can be attributed to neurotoxic substances prevalent in those regions. The high concentration of different neurotoxic metals (lead, cadmium, copper, manganese and iron) and petroleum hydrocarbons in the tissues of the marine snails at Dona Paula, Vasco and Velsao clearly substantiate reduction of AChE activities in C. contracta. The in vitro studies on the inhibition of AChE by different metals and PHC indicated that lead, cadmium and copper are the most predominant inhibitor. Based on the AChE activities in C. contracta the sampling sites along the Goa coast can be classified into three major clusters such as highly contaminated sites (Dona Paula, Vasco and Velsao), moderately contaminated sites (Arambol, Anjuna) and least contaminated site (Palolem).
Nitrite accumulation can be undesirable in nitrifying reactors used for the biological elimination of nitrogen from wastewaters because the ammonium oxidation process was seen to be inhibited. There is a need to better understand the effects of nitrite on both ammonium and nitrite oxidizing processes. In this paper, the effect of nitrite on the nitrifying activity of a sludge produced in steady-state nitrification was evaluated in batch cultures. At 25 mg N/l of added nitrite, nitrification was successfully carried out. Addition of higher nitrite concentrations to nitrifying cultures (100 and 200 mg N/l) provoked inhibitory effects on the nitrification respiratory process. Nitrite at 100 and 200 mg N/l induced a significant decrease in the values for nitrate yield (-20% and -34%, respectively) and specific rate of nitrate formation (-26% and -67%, respectively), while the ammonium consumption efficiency kept high and the specific rate of ammonium oxidation did not significantly change. This showed that the nitrite oxidizing process was more sensitive to the presence of nitrite than the ammonium oxidizing process. These results showed that as a consequence of nitrite accumulation in nitrification systems, the activity of the nitrite oxidizing bacteria could be more inhibited than that of the ammonium oxidizing bacteria, provoking a higher accumulation of nitrite in the medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.