When metals are mechanically loaded at elevated temperatures for extended periods of time, creep damage will occur in the form of cavities at grain boundaries. In the present experiments it is demonstrated that in binary iron-tungsten alloys creep damage can be self healed by selective precipitation of a W-rich phase inside these cavities. Using synchrotron X-ray nano-tomography the simultaneous evolution of creep cavitation and precipitation is visualized in 3D images with a resolution down to 30 nm. The degree of filling by precipitation is analysed for a large collection of individual creep cavities. Two clearly different types of behaviour are observed for isolated and linked cavities, where the isolated cavities can be filled completely, while the linked cavities continue to grow. The demonstrated selfhealing potential of tungsten in iron-based metal alloys provides a new perspective on the role of W in high-temperature creep-resistant steels.
The diffusivities of substitutional impurity elements in iron have been computed with ab inito electronic density functional techniques, using exchange-correlation functional PW91. Excess entropies and the attempt frequency for a jump were determined by calculating phonon frequencies in the harmonic approximation. The influence of the degree of spontaneous magnetization on diffusivity is taken into account by means of the Girifalco model. The activation energy for diffusion has been determined by computing the vacancy formation energy, impurity-vacancy binding energies, migration barrier energies, and the effective energy associated with correlation of vacancy-mediated jump. For each type of impurity atom these contributions have been evaluated and analyzed up to and including the fifth nearest-neighbor shell of the impurity atom. It is found that impurities that have a low migration energy tend to have high effective energy associated with vacancy migration correlation, and vice versa, so that the total diffusion activation energies for all impurities are surprisingly close to each other. The strong effect of vacancy migration correlation is found to be associated with the high migration energy for iron self-diffusion, so that movement of vacancies through the iron bulk is in all cases, except cobalt, the limiting factor for impurity diffusion. The diffusivities calculated with the PW91 functional show good agreement with most of the experimental data for a wide range of elements.
A self-consistent model is applied to predict the creep cavity growth and strain rates in metals from the perspective of self-healing. In this model, the creep cavity growth rate is intricately linked to the strain rate. The self-healing process causes precipitates to grow inside creep cavities. Due to the Kirkendall effect, a diffusional flux of vacancies is induced in the direction away from the creep cavity during this selective self-healing precipitation. This process impedes the creep cavity growth. The critical stress for self-healing can be derived, and an analysis is made of the efficiency of self-healing elements in binary Fe–Cu, Fe–Au, Fe–Mo, and Fe–W alloys. Fe–Au is found to be the most efficient self-healing alloy. Fe–Mo and Fe–W alloys provide good alternatives that have the potential to be employed at high temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.