Brown rice is a main popular health food with high nutritional value and health benefits. As a result of poor post-harvest drying and inappropriate storage conditions, rice grains are often damaged through fungal spoilage as well as mycotoxin production. The objective of this research was to evaluate the possibility of using the near infrared spectroscopy, with a wavenumber range between 12500 and 4000 cm À1 (800-2500 nm), as a rapid method for detection of aflatoxins in brown rice. Firstly, storage trials were carried out to generate representative of samples contaminated and non-contaminated with aflatoxins. These data were used to create a partial least squares regression model using 120 brown rice samples with the required near infrared spectral data and aflatoxin concentration levels that were determined using a standard enzymelinked immunosorbent assays method. The accuracy of developed models was externally validated using the test set. The statistical model developed from the treated spectra (vector normalization; SNV) provided the best accuracy in prediction with a coefficient of determination of prediction (r 2) of 0.95, a root mean square error of prediction of 415.00 mg kg À1 and a bias À54.00 mg kg À1. The model developed showed good predictive performance which suggests that it could have practical applications as a rapid method to detect aflatoxins in brown rice.
The objective of this research was to apply near-infrared spectroscopy, with a short-wavelength range of 950 to 1,650 nm, for the rapid detection of aflatoxin B1 (AFB1) contamination in polished rice samples. Spectra were obtained by reflection mode for 105 rice samples: 90 samples naturally contaminated with AFB1 and 15 samples artificially contaminated with AFB1. Quantitative calibration models to detect AFB1 were developed using the original and pretreated absorbance spectra in conjunction with partial least squares regression with prediction testing and full cross-validation. The statistical model from the external validation process developed from the treated spectra (standard normal variate and detrending) was most accurate for prediction, with a correlation coefficient (r) of 0.952, a standard error of prediction of 3.362 μg/kg, and a bias of −0.778 μg/kg. The most predictive models according to full cross-validation were developed from the multiplicative scatter correction pretreated spectra (r = 0.967, root mean square error in cross-validation [RMSECV] = 2.689 μg/kg, bias = 0.015 μg/kg) and standard normal variate pretreated spectra (r = 0.966, RMSECV = 2.691 μg/kg, bias = 0.008 μg/kg). A classification-based partial least squares discriminant analysis model of AFB1 contamination classified the samples with 90% accuracy. The results indicate that the near-infrared spectroscopy technique is potentially useful for screening polished rice samples for AFB1 contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.