To investigate the influence of plant productivity on plant-herbivore interactions in stream ecosystems, we varied the productive capacity of algal assemblages by exposing periphyton to three levels of irradiance and two levels of grazing. We studied interactions between algal assemblages (grown from algae obtained from four Oregon streams) and herbivorous snails (Juga silicula) in 15 laboratory streams containing either 250 snails/m 2 or no snails. Biomass, production, export, and taxonomic structure of the algal community were measured at intervals throughout the 75-d study. Ingestion rate and assimilation efficiency of snails also were measured on six different dates using dual-isotope labeling, and snail growth was measured at the end of the experiment.Rates of primary production, algal biomass accumulation, and dominance by chlorophytes generally increased with higher irradiance, although these patterns were modified by herbivores. Ungrazed periphyton at low irradiance (photon flux density: 20 ~mol·m-2 • s-1 ) accumulated little biomass, which was further reduced by grazing snails. At intermediate (100 ~mol·m-2 ·s-1 ) and high (400 ~mol·m-2 ·s-1 ) irradiance, snails delayed the accumulation of algal biomass but did not affect the final biomass attained. After 43 d, net primary production (NPP) at high irradiance was unaffected by grazing, whereas grazing increased NPP at both low and intermediate irradiance. Algal export increased with both irradiance and the presence of grazers and constituted a significant loss of plant biomass from the streams. Grazing by Juga delayed algal succession and altered algal taxonomic structure and assemblage physiognomy by reducing the relative abundance of erect and non-attached algae, while increasing the abundance of adnate diatoms.Snails grew slowly at low irradiance, due to scant food resources, but had high growth rates at intermediate and high irradiance, probably because food was not limiting. Assimilation efficiencies for snails generally varied from 40 to 70% and were highest at low irradiance. At low irradiance, 90% of benthic production was harvested by grazers, whereas only 10% accumulated as attached biomass or was exported. At higher irradiances, < 15% of primary production was harvested by grazers, and >85% persisted as attached algae or was exported.In these stream ecosystems, the biomass and production of grazers were influenced by abiotic constraints placed on algal productive capacity (i.e., the ability of a plant assemblage to generate biomass). The structure and metabolism of algal assemblages were affected, in turn, by consumptive demand of herbivores. The productive capacity ofperiphyton modified the nature and outcome of plant-herbivore interactions. This capacity therefore has important implications for the operation of stream ecosystems.
Effects of current velocity and light energy on the taxonomica and physiognomic characteristics of periphyton assemblages were investigated in laboratory streams. The initial rate of colonization was related to current velocity, while the effects of light energy accounted for differences in species composition by the end of the experiment. Although the laboratory systems had many species in common during the realy stages of colonization, the experimental treatments generated differences in rates of communitydevelopment. synedra spp. were the early coloniters of the substrate, followed by an understory of Achnanthes spp. After day 16, Stigeoclonium tenue developed in the streams exposed to the higher photon flux density, but was rare in the shaded streams. The applicability of traditional successional theory to develoopmental patterns in lotic periphyton assemblages is discussed.
ABSTRACT/Periphyton communities represent potentially excellent candidates for assessing the recovery of lotto ecosystems after disturbance. These communities are ubiquitous, relatively easy to sample and measure (in terms of total community biomass), have short generation times, and may influence the recovery rates of higher trophic levels. The first section of this article analyzes how site availability, species availability, and differential species performance influence periphyton successional dynamics. This background information provides a foundation for understanding how pertphytic organisms respond after a disturbance. The second section of this article analyzes how periphyton communities respond to four different types of disturbance (flood events, desiccation, organic nutrient enrichment, and toxic metal exposure). Although data are limited, it is concluded that the fast growth rates and short generation times of periphytic organisms, coupled with their flexible life history strategies and good dispersal ability, allow Iotic periphyton communities to recover relatively quickly after a disturbance. In addition, disturbance type and severity, local environmental conditions, and site-specific factors also will influence recovery rates.Future research needs include a better understanding of: (1) what periphyton property(ies) would serve as the best index of recovery; (2) whether or not the robustness of this index varies among different environments and different disturbances; (3) interactions between autotrophs and heterotrophs within the periphyton mat, particularly with respect to nutrient cycling; (4) competitive interactions among organisms; (5) functional redundancy of organisms; and (6) the influence of the riparian zone and channel geomorphology on periphyton recovery rates.Periphyton communities in lotic ecosystems are complex assemblages comprised of autotrophs (algae) and heterotrophs (fungi, bacteria, protozoa), attached to substrates, and often embedded in a polysaccharide matrix. Periphyton communities possess properties that make them particularly useful in evaluating the rates at which recovery occurs in lotic ecosystems following disturbance. For example, they are ubiquitous and relatively easy to sample and measure (in terms of total community biomass). In addition, compared to terrestrial biota, many periphytic organisms have very short generation times (Cairns 1982, Baars 1983. This permits periphyton growth to be monitored through many generations and different successional seres between disturbance events, potentially resulting in a better understanding of recovery dynamics. Finally, because periphyton is a high-quality food resource for many lotic invertebrates (Lamberti and Moore 1984,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.