We have cloned two splice variants of the human homolog of the alpha1A subunit of voltage-gated Ca2+ channels. The sequences of human alpha1A-1 and alpha1A-2 code for proteins of 2510 and 2662 amino acids, respectively. Human alpha1A-2alpha2bdeltabeta1b Ca2+ channels expressed in HEK293 cells activate rapidly (tau+10mV = 2.2 ms), deactivate rapidly (tau-90mV = 148 micros), inactivate slowly (tau+10mV = 690 ms), and have peak currents at a potential of +10 mV with 15 mM Ba2+ as charge carrier. In HEK293 cells transient expression of Ca2+ channels containing alpha1A/B(f), an alpha1A subunit containing a 112 amino acid segment of alpha1B-1 sequence in the IVS3-IVSS1 region, resulted in Ba2+ currents that were 30-fold larger compared to wild-type (wt) alpha1A-2-containing Ca2+ channels, and had inactivation kinetics similar to those of alpha1B-1-containing Ca2+ channels. Cells transiently transfected with alpha1A/B(f)alpha2bdeltabeta1b expressed higher levels of the alpha1, alpha2bdelta, and beta1b subunit polypeptides as detected by immunoblot analysis. By mutation analysis we identified two locations in domain IV within the extracellular loops S3-S4 (N1655P1656) and S5-SS1 (E1740) that influence the biophysical properties of alpha1A. alpha1AE1740R resulted in a threefold increase in current magnitude, a -10 mV shift in steady-state inactivation, and an altered Ba2+ current inactivation, but did not affect ion selectivity. The deletion mutant alpha1ADeltaNP shifted steady-state inactivation by -20 mV and increased the fast component of current inactivation twofold. The potency and rate of block by omega-Aga IVA was increased with alpha1ADeltaNP. These results demonstrate that the IVS3-S4 and IVS5-SS1 linkers play an essential role in determining multiple biophysical and pharmacological properties of alpha1A-containing Ca2+ channels.
The human NMDAR2D subunit was cloned, and the pharmacological properties of receptors resulting from injection of transcripts encoding human NMDAR1A and NMDAR2D subunits in Xenopus oocytes were characterized by profiling NMDA receptor agonists and antagonists. We found that glutamate, NMDA, glycine, and d‐serine were significantly more potent on hNMDAR1A/2D than on hNMDAR1A/2A or hNMDAR1A/2B. Also, the potencies of NMDA and glycine were higher for hNMDAR1A/2D than for hNMDAR1A/2C. Ifenprodil was more potent at hNMDAR1A/2B than at hNMDAR1A/2D, whereas 5,7‐dichlorokynurenate was more potent at hNMDAR1A/2A than at hNMDAR1A/2D. As measured in transiently transfected human embryonic kidney 293 cells, the maximal inward current in the presence of external Mg2+ occurred at −40 mV, and full block was not observed at negative potentials. Kinetic measurements revealed that the higher affinity of hNMDAR1A/2D for both glutamate and glycine relative to hNMDAR1A/2A and hNMDA1A/2B can be explained by slower dissociation of each agonist from hNMDAR1A/2D. The hNMDAR1A/2D combination represents a pharmacologically and functionally distinct receptor subtype and may constitute a potentially important target for therapeutic agents active in the human CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.