Scaling trapped-ion quantum computing will require robust trapping of at least hundreds of ions over long periods, while increasing the complexity and functionality of the trap itself. Symmetric three-dimensional (3D) structures enable high trap depth, but microfabrication techniques are generally better suited to planar structures that produce less ideal conditions for trapping. We present an ion trap fabricated on stacked 8-inch wafers in a large-scale MEMS microfabrication process that provides reproducible traps at a large volume. Electrodes are patterned on the surfaces of two opposing wafers bonded to a spacer, forming a 3D structure with 2.5 µm standard deviation in alignment across the stack. We implement a design achieving a trap depth of 1 eV for a 40 Ca + ion held at 200 µm from either electrode plane. We characterize traps, achieving measurement agreement with simulations to within ±5% for mode frequencies spanning 0.6-3.8 MHz, and evaluate stray electric field across multiple trapping sites. We measure motional heating rates over an extensive range of trap frequencies, and temperatures, observing 40 phonons/s at 1 MHz and 185 K. This fabrication method provides a highly scalable approach for producing a new generation of 3D ion traps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.