Targeted whole-exome sequencing (WES) is a powerful diagnostic tool for a broad spectrum of heterogeneous neurological disorders. Here, we aim to examine the impact on diagnosis, treatment and cost with early use of targeted WES in early-onset epilepsy. WES was performed on 180 patients with early-onset epilepsy (≤5 years) of unknown cause. Patients were classified as Retrospective (epilepsy diagnosis >6 months) or Prospective (epilepsy diagnosis <6 months). WES was performed on an Ion Proton™ and variant reporting was restricted to the sequences of 620 known epilepsy genes. Diagnostic yield and time to diagnosis were calculated. An analysis of cost and impact on treatment was also performed. A molecular diagnoses (pathogenic/likely pathogenic variants) was achieved in 59/180 patients (33%). Clinical management changed following WES findings in 23 of 59 diagnosed patients (39%) or 13% of all patients. A possible diagnosis was identified in 21 additional patients (12%) for whom supporting evidence is pending. Time from epilepsy onset to a genetic diagnosis was faster when WES was performed early in the diagnostic process (mean: 145 days Prospective vs. 2,882 days Retrospective). Costs of prior negative tests averaged $8,344 per patient in the Retrospective group, suggesting savings of $5,110 per patient using WES. These results highlight the diagnostic yield, clinical utility and potential cost-effectiveness of using targeted WES early in the diagnostic workup of patients with unexplained early-onset epilepsy. The costs and clinical benefits are likely to continue to improve. Advances in precision medicine and further studies regarding impact on long-term clinical outcome will be important.
Background: Status epilepticus (SE) is the most common pediatric neurological emergency. Timely treatment is crucial, yet administration of rescue medications is often delayed and under-dosed. We aim to improve SE management by ensuring that every child at risk of SE in our province has an individualized seizure action plan (SAP) outlining the steps that should be taken during SE. Methods: A survey was distributed to parents of epilepsy patients aged 1 month to 19 years. Primary outcome was percentage of patients with SAPs. Secondary outcome was parental interest in a SAP mobile application. Following chart review, univariate and multivariate analysis was performed to identify variables that predict whether patients have SAPs. Results: Of 192 participants, 61.5% have SAPs. On univariate analysis, history of prior SE and male gender increased likelihood of having a SAP. On logistic regression, Nagelkerke R2 was 0.204 and our model correctly predicted 82.2% of patients with SAPs. 83.3% of parents were interested in a SAP mobile application. Conclusions: This is one of the first studies to examine SAP prevalence in a pediatric epilepsy population. There is a need to increase the percentage of epilepsy patients with SAPs. Most parents would find a SAP mobile application valuable in their child’s management.
Background: West syndrome (WS) is characterized by the onset of epileptic spasms usually within the first year of life. Global developmental delay with/without regression is common. Advances in high-throughput sequencing have supported the genetic heterogeneity of this condition. To better understand the genetic causes of this disorder, we investigated the results of targeted exome sequencing in 29 patients with WS. Methods: Whole exome sequencing (WES) was performed on an Ion ProtonTM and variant reporting was restricted to sequences of 620 known epilepsy genes. Diagnostic yield and treatment impact are described for 29 patients with WS. Results: A definitely/likely diagnosis was made in 10 patients (34%), which included 10 different genes (ALG13, PAFAH1B1, SLC35A2, DYNC1H1, ADSL, DEPDC5, ARX, CDKL5, SCN8A, STXBP1) known to be associated with epilepsy or WS. Most variants were de novo dominant (X-linked/autosomal) except for ARX (X-linked recessive) and ADSL (autosomal recessive). 4 out of 10 (40%) had a genetic diagnosis with potential treatment implications. Conclusions: These results emphasize the genetic heterogeneity of WS. The high diagnostic yield, along with the significant genetic variability, and the potential for treatment impact, supports the early use of this testing in patients with unexplained WS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.