We have isolated mutants of the yeast Saccharomyces cerevisiae that are defective in localization of nuclear proteins. Chimeric proteins containing the nuclear localization sequence from SV40 large T-antigen fused to the N-terminus of the mitochondrial Fl3-ATPase are localized to the nucleus. Npl (nuclear protein localization) mutants were isolated by their ability to grow on glycerol as a consequence of no longer exclusively targeting SV40-F1f-ATPase to the nucleus. All mutants with defects in localization of nucleolar proteins and histones are temperature sensitive for growth at 36°C. Seven alleles of NPL3 and single alleles of several additional genes were isolated. NPL3 mutants were studied in detail. NPL3 encodes a nuclear protein with an RNA recognition motif and similarities to a family of proteins involved in RNA metabolism. Our genetic analysis indicates that NPL3 is essential for normal cell growth; cells lacking NPL3 are temperature sensitive for growth but do not exhibit a defect in localization of nuclear proteins. Taken together, these results indicate that the mutant forms of Npl3 protein isolated by this procedure are interfering with nuclear protein uptake in a general manner. INTRODUCTIONCertain proteins enter the nucleus by recognition of a nuclear localization sequence (NLS) in the transported protein (Silver, 1991). After NLS-dependent binding either in the cytoplasm or at the nuclear pore complex, proteins are transported through the pore in an ATPdependent manner. This two-step model is based on observations made on the behavior of proteins microin-
An important aspect of the pathophysiology of human immunodeficiency virus type-1 (HIV-1) infection is the ability of the virus to replicate in non-dividing cells. HIV-1 matrix (MA), the amino-terminal domain of the Pr55 gag polyprotein (Pr55), bears a nuclear localization signal that promotes localization of the viral preintegration complex to the nucleus of non-dividing cells following virus entry. However, late during infection, MA, as part of Pr55, directs unspliced viral RNA to the plasma membrane, the site of virus assembly. How MA can mediate these two opposing targeting functions is not understood. Here we demonstrate that MA has a previously undescribed nuclear export activity. Although MA lacks the canonical leucine-rich nuclear export signal, nuclear export is mediated through the conserved Crm1p pathway and functions in both mammalian cells and yeast. A mutation that disrupts the MA nuclear export signal (MA-M4) mislocalizes Pr55 and genomic viral RNA to the nucleus, thereby severely impairing viral replication. Furthermore, we show that MA-M4 can act in a dominant-negative fashion to mislocalize genomic viral RNA even in the presence of wild-type MA. We conclude that the MA nuclear export signal is required to counteract the MA nuclear localization signal, thus ensuring the cytoplasmic availability of the components required for virion assembly.
To identify components involved in nuclear protein import, we used a genetic selection to isolate mutants that mislocalized a nuclear-targeted protein. We identified temperature-sensitive mutants that accumulated several different nuclear proteins in the cytoplasm when shifted to the semipermissive temperature of 30 degrees C; these were termed npl (nuclear protein localization) mutants. We now present the properties of yeast strains bearing mutations in the NPL4 gene and report the cloning of the NPL4 gene and the characterization of the Np14 protein. The npl4-1 mutant was isolated by the previously described selection scheme. The second allele, npl4-2, was identified from an independently derived collection of temperature-sensitive mutants. The npl4-1 and npl4-2 strains accumulate nuclear-targeted proteins in the cytoplasm at the nonpermissive temperature consistent with a defect in nuclear protein import. Using an in vitro nuclear import assay, we show that nuclei prepared from temperature-shifted npl4 mutant cells are unable to import nuclear-targeted proteins, even in the presence of cytosol prepared from wild-type cells. In addition, npl4-2 cells accumulate poly(A)+ RNA in the nucleus at the nonpermissive temperature, consistent with a failure to export mRNA from the nucleus. The npl4-1 and npl4-2 cells also exhibit distinct, temperature-sensitive structural defects: npl4-1 cells project extra nuclear envelope into the cytoplasm, whereas npl4-2 cells from nuclear envelope herniations that appear to be filled with poly(A)+ RNA. The NPL4 gene encodes an essential M(r) 64,000 protein that is located at the nuclear periphery and localizes in a pattern similar to nuclear pore complex proteins. Taken together, these results indicate that this gene encodes a novel nuclear pore complex or nuclear pore complex-associated component required for nuclear membrane integrity and nuclear transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.