Significant motor efficiency improvement can be achieved by substituting aluminum with copper die-cast rotor in a Squirrel Cage Induction Motor (S. C.I.M.).
In this paper WC describe a novel technique to model induction motors with a diecast stator and rotor and to examine the effects of various magnetic materials on the electrical performance of the motor. For electric vehicle applications, a high volume production operation of the electric motor requires the motor to be small and inexpensive. The expensive labor and material used to manufacture the motor encouraged the -researchers to find new methods and techniques to reduce the cost and improve the performance. Diecast rotor and stator windings reduce motor cost and size. For &casting inductio~n motors, the motor laminations should be designed to optimize the electromagnetic field distribution over the cross section and along the avial direction. The magnetic material used for the laminations should also reduce losses and improve the overall efficiency. A 100 hp four-pole induction motor was modeled with finite elements, the field distribution, the magnetic flux density, and the mechanical performance of the motor were computed using nonlinear magnetostatic and complex steady-state eddy current techniques. The. difference in the electrical and mechanical performance of the motor were evaluated for copper and aluminum diecasting. The results show that copper diecasting of the rotor and the stator of the induction motor with magnetic material properties and identified slotting shape is the way to achieve better motor performance and low cost operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.