The direct fusion of viral and target cell membranes required for human immunodeficiency virus type 1 (HIV-1) entry is initiated by the primary receptor, CD4, and a chemokine receptor, usually CXCR4 or CCR5. Chemokine receptors are members of the G-protein-coupled receptor (GPCR) superfamily that possess seven transmembrane (TM) domains. Because of its importance in the development of AIDS, CXCR4 has been explored as a new target for drug discovery to combat the AIDS epidemic (3,8,10). As the natural ligands of chemokine receptors, chemokines are small soluble proteins of about 70 amino acid residues that play prominent roles in leukocyte activation and inflammation (5, 11). Most of the known human chemokines are broadly categorized into the CXC and CC chemokines based on the position of two conserved cysteine residues in their amino (N)-terminal domains (3, 11). The natural chemokines of CXCR4 or CCR5 can inhibit HIV-1 infection (4, 13) by blocking HIV-1 gp120 binding sites (2, 14) and/or inducing receptor internalization (1, 9).Despite their important roles in the pathogenesis of AIDS and other human diseases, the lack of receptor selectivity of natural chemokines has made their direct clinical applications problematic. It is common knowledge that a chemokine receptor can often be recognized by multiple ligands, while a chemokine ligand binds to several different receptors (15), illustrating the apparent redundancy and the lack of selectivity in the chemokine ligand-receptor interaction network. As such, we have been working toward the development of a systematic chemical biology approach based on chemokine protein structures and chemistry to generate synthetically and modularly modified (SMM) chemokines that have higher receptor binding selectivity and improved pharmacological profiles compared with natural chemokines. This SMM chemokine approach was recently applied to generate novel ligands selective for CXCR4 or CCR5 by modifying the N-terminal (1-10) sequence module of viral macrophage inflammatory protein II (vMIP-II) or stromal cell-derived factor 1␣ (SDF-1␣) (unpublished data). Importantly, some of these SMM chemokines,
The chemokine receptor CXCR4 is one of two principal coreceptors for HIV-1 entry into target cells. CXCR4 is known to form homodimers. We previously demonstrated that the amino (N)-terminus of viral macrophage protein (vMIP)-II is the major determinant for CXCR4 recognition, and that V1 peptide derived from the N-terminus of vMIP-II (1-21 residues) showed significant CXCR4 binding. Interestingly, an all-D-amino acid analog of V1 peptide, DV1 peptide, displayed even higher binding affinity and strong antiviral activity in inhibiting the replication of CXCR4-dependent HIV-1 strains. In the present study, we synthetically linked two DV1 peptides with the formation of a disulfide bond between the two cysteine residues present in the peptide sequence to generate a dimeric molecule potentially capable of interacting with two CXCR4 receptors. DV1 dimer showed enhanced binding affinity and antiviral activity compared with DV1 monomer. Ligand binding site mapping experiments showed that DV1 dimer overlaps with HIV-1 gp120 on CXCR4 binding sites, including several transmembrane (TM) residues located close to the extracellular side and the N-terminus of CXCR4. This finding was supported by the molecular modeling of CXCR4 dimer–DV1 dimer interaction based on the crystal structure of CXCR4, which showed that DV1 dimer is capable of interacting with the CXCR4 dimeric structure by allowing the N-terminus of each DV1 monomer to reach into the binding pocket of CXCR4 monomer. The development of this bivalent ligand provides a tool to further probe the functions of CXCR4 dimerization and to study CXCR4 heterodimerization with other receptors.
Human immunodeficiency virus type 1 (HIV-1) uses a chemokine receptor, usually CXCR4 or CCR5, for entry into the target cells. Here, we used a chemical biology approach to demonstrate that binding and signaling domains in CXCR4 are possibly distinct and separate, as the new analogue, D(1-10)-vMIP-II-(9-68)-SDF-1alpha (RCP222), could not activate CXCR4 despite the fact that its binding activity was comparable to that of stromal cell-derived factor (SDF)-1alpha, the only natural ligand of CXCR4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.