Antifungal LAB are interesting to prevent food spoilage in fermented food and prolong their shelf life. In this way, chemical preservatives could be avoided and replaced by natural preservatives.
This paper describes the production, the purification and the antilisterial activity of amylolysin, a novel bacteriocin from B. amyloliquefaciens GA1. The strain genome was first analysed using PCR techniques for the presence of gene clusters that direct the synthesis of characterised bacteriocins from B. amyloliquefaciens and the closely related B. subtilis. Our results suggest that amylolysin corresponds to a novel bacteriocin. The effect of amylolysin on the growth of different isolates of Listeria monocytogenes was evaluated in poultry meat during 21 days of storage at 4°C. A potent antilisterial effect was observed for all the indicator strains tested, demonstrating that amylolysin is a novel bacteriocin that could be used as a food preservative.
Aim: The study aimed to evaluate the effect of the bacteriocins produced by Lactobacillus sakei CWBI‐B1365 and Lactobacillus curvatus CWBI‐B28 on the growth and survival of Listeria monocytogenes in raw beef and poultry meat.
Methods and Results: The sakacin P and sakacin G structural genes were identified in Lact. curvatus CWBI‐B28 and Lact. sakei CWBI‐B1365 using PCR amplification, respectively. The effect of the two bacteriocinogenic strains either alone or together, and that of the nonbacteriocin‐producing strain Lact. sakei LMG17302, on the growth of L. monocytogenes was evaluated in beef and poultry meat. In raw beef, the pathogenic bacteria were inhibited by the bacteriocinogenic strains. The bacteriocinogenic strains had no activity in raw chicken meat when inoculated separately, while they showed a clear anti‐Listeria effect when applied together.
Conclusion: Sakacin G producing Lact. sakei and sakacin P producing Lact. curvatus may be applied in raw beef to inhibit L. monocytogenes. In poultry meat, the inhibition of L. monocytogenes could only be achieved by a combined application of these bacteriocin‐producing strains.
Significance and Impact of the Study: In some meat products, the combined application of different class IIa bacteriocin producing lactic acid bacterium can enhance the anti‐listerial activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.