Aims. We examine whether ejection phenomena from accreting T Tauri stars can be described by only one type of self-collimated jet model. Methods. We present analytical kinematic predictions valid soon after the Alfvén surface for all types of steady magnetically selfconfined jets. Results. We show that extended disc winds, X-winds, and stellar winds occupy distinct regions in the poloidal speed vs. specific angular momentum plane. Comparisons with current observations of T Tauri jets yield quantitative constraints on the range of launching radii, magnetic lever arms, and specific energy input in disc and stellar winds. Implications on the origin of jet asymmetries and disc magnetic fields are outlined. Conclusions. We argue that ejection phenomena from accreting T Tauri stars most likely include three dynamical components: (1) an outer self-collimated steady disc wind carrying most of the mass-flux in the optical jet (when present); confining (2) a pressure-driven coronal stellar wind; and (3) a hot inner flow made of blobs sporadically ejected from the magnetopause. If the stellar magnetic moment is parallel to the disc magnetic field, then the highly variable inner flow resembles a "Reconnection X-wind", that has been proven to efficiently brake down an accreting and contracting young star. If the magnetic moment is anti-parallel, then larger versions of the solar coronal mass ejections are likely to occur. The relative importance of these three components in the observed outflows and the range of radii involved in the disc wind are expected to vary with time, from the stage of embedded source to the optically revealed T Tauri star phase.
We report on the properties of pre-main-sequence objects in the Taurus molecular clouds as observed in 7 mid-and far-infrared bands with the Spitzer Space Telescope. There are 215 previously-identified members of the Taurus star-forming region in our ∼44 square degree map; these members exhibit a range of Spitzer colors that we take to define young stars still surrounded by circumstellar dust (noting that ∼20% of the bonafide Taurus members exhibit no detectable dust excesses). We looked for new objects in the survey field with similar Spitzer properties, aided -2by extensive optical, X-ray, and ultraviolet imaging, and found 148 candidate new members of Taurus. We have obtained follow-up spectroscopy for about half the candidate sample, thus far confirming 34 new members, 3 probable new members, and 10 possible new members, an increase of 15-20% in Taurus members. Of the objects for which we have spectroscopy, 7 are now confirmed extragalactic objects, and one is a background Be star. The remaining 93 candidate objects await additional analysis and/or data to be confirmed or rejected as Taurus members. Most of the new members are Class II M stars and are located along the same cloud filaments as the previously-identified Taurus members. Among non-members with Spitzer colors similar to young, dusty stars are evolved Be stars, planetary nebulae, carbon stars, galaxies, and AGN.Subject headings: stars: formation -stars: circumstellar matter -stars: pre-main sequenceinfrared: starswhere m is the reported magnitude (and F ν the flux density) for a given object, Z = 18.259, 17.204, and 14.837, and f = 1.94×10 −16 , 4.76×10 −16 , and 5.71×10 −15 ergs cm −2 s −1Å−1 counts −1 sec for U , UVW1, and UVW2 (respectively). In the equation, λ is in units ofÅ, and c is 3×10 18Å s −1 The effective wavelengths are 0.344, 0.291, and 0.212 µm for U , UVW1, and UVW2. There are ∼1600 objects with XMM-Newton OM flux densities in our catalog (0.2% of the entire catalog).We note that many of the X-ray detected XEST sources are likely background galaxies (see Güdel et al. 2007) and that XEST included regions not covered by our map, such as L1551.The XEST team assembled a catalog of supporting data from the literature, such as optical photometric measurements, for all of the previously-identified Taurus members (see §3.1.1 below); we have included these photometric points in our database, converting Johnson magnitudes to flux densities using zero-points available in the literature (e.g., Cox 2001 and references therein).The SEDs presented in this paper use all of these supporting data where available (except for the X-ray fluxes), and are presented as λF λ in cgs units (erg s −1 cm −2 ), against λ in microns.2 In SDSS, a "maggy" is the ratio of the flux density of the object to a standard flux density. The Sloan magnitudes are AB magnitudes, as opposed to Vega magnitudes. In the AB system, a flat spectrum object with 3631 Jy at each band should have every magnitude equal to zero, and all maggies equal to one. Flux densities returned by th...
Context. Accretion and ejection are complex and related processes that vary on various timescales in young stars. Aims. We intend to investigate the accretion and outflow dynamics and their interaction from observations of the classical T Tauri star AA Tau. Methods. From a long time series of high resolution (R = 115 000) HARPS spectra and simultaneous broad-band photometry, we report new evidence for magnetospheric accretion as well as ejection processes in the nearly edge-on classical T Tauri star AA Tau. Results. AA Tau's light curve is modulated with a period of 8.22 d. The recurrent luminosity dips are due to the periodic occultation of the central star by the magnetically-warped inner disk edge located at about 9 R . Balmer line profiles exhibit a clear rotational modulation of high-velocity redshifted absorption components with a period of 8.22 days as well, with a maximum strength when the main accretion funnel flow passes through the line of sight. At the same time, the luminosity of the system decreases by about 1 mag, indicative of circumstellar absorption of the stellar photosphere by the magnetically-warped, corotating inner disk edge. The photospheric and He I radial velocities also exhibit periodic variations, and the veiling is modulated by the appearance of the accretion shock at the bottom of the accretion funnel. Diagnostics of hot winds and their temporal behaviour are also presented. Conclusions. The peculiar geometry of the young AA Tau system (nearly edge-on) allows us to uniquely probe the acretion-ejection region close to the star. We find that most spectral and photometric diagnostics vary as expected from models of magneticallychannelled accretion in young stars, with a large scale magnetosphere tilted by 20• onto the star's spin axis. We also find evidence for time variability of the magnetospheric accretion flow on a timescale of a few rotational periods.
From observations collected with the ESPaDOnS spectropolarimeter, we report the discovery of magnetic fields at the surface of the mildly accreting classical T Tauri star (cTTS) V2129 Oph. Zeeman signatures are detected, both in photospheric lines and in the emission lines formed at the base of the accretion funnels linking the disc to the protostar, and monitored over the whole rotation cycle of V2129 Oph. We observe that rotational modulation dominates the temporal variations of both unpolarized and circularly polarized line profiles. We reconstruct the large‐scale magnetic topology at the surface of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to be rather complex, with a dominant octupolar component and a weak dipole of strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to the rotation axis. The large‐scale field is anchored in a pair of 2‐kG unipolar radial field spots located at high latitudes and coinciding with cool dark polar spots at photospheric level. This large‐scale field geometry is unusually complex compared to those of non‐accreting cool active subgiants with moderate rotation rates. As an illustration, we provide a first attempt at modelling the magnetospheric topology and accretion funnels of V2129 Oph using field extrapolation. We find that the magnetosphere of V2129 Oph must extend to about 7R★ to ensure that the footpoints of accretion funnels coincide with the high‐latitude accretion spots on the stellar surface. It suggests that the stellar magnetic field succeeds in coupling to the accretion disc as far out as the corotation radius, and could possibly explain the slow rotation of V2129 Oph. The magnetospheric geometry we derive qualitatively reproduces the modulation of Balmer lines and produces X‐ray coronal fluxes typical of those observed in cTTSs.
We report the results of a synoptic study of the photometric and spectroscopic variability of the classical T Tauri star AA Tau on timescales ranging from a few hours to several weeks. The AA Tau light curve had been previously shown to vary with a 8.2 d period, exhibiting a roughly constant brightness level, interrupted by quasi-cyclic fading episodes, which we interpreted as recurrent eclipses of the central star by the warped inner edge of its accretion disk (Bouvier et al. 1999). Our observations show the system is dynamic and presents non-stationary variability both in the photometry and spectroscopy. The star exhibits strong emission lines that show substantial variety and variability in their profile shapes and fluxes. Emission lines such as Hα and Hβ show both infall and outflow signatures and are well reproduced by magnetospheric accretion models with moderate mass accretion rates (10 −8 −10 −9 M yr −1 ) and high inclinations (i ≥ 60 • ). The veiling shows variations that indicate the presence of 2 rotationally modulated hot spots corresponding to the two magnetosphere poles. It correlates well with the He line flux, with B − V and the V excess flux. We have indications of a time delay between the main emission lines (Hα, Hβ and He ) and veiling, the lines formed farther away preceding the veiling changes. The time delay we measure is consistent with accreted material propagating downwards the accretion columns at free fall velocity from a distance of about 8 R . In addition, we report periodic radial velocity variations of the photospheric spectrum which might point to the existence of a 0.02 M object orbiting the star at a distance of 0.08 AU. During a few days, the eclipses disappeared, the variability of the system was strongly reduced and the line fluxes and veiling severely depressed. We argue that this episode of quiescence corresponds to the temporary disruption of the magnetic configuration at the disk inner edge. The smooth radial velocity variations of inflow and outflow diagnostics in the Hα profile yield further evidence for large scale variations of the magnetic configuration on a timescale of a month. These results may provide the first clear evidence for large scale instabilities developping in T Tauri magnetospheres as the magnetic field lines are twisted by differential rotation between the star and the inner disk. The interaction between the inner accretion disk and the stellar magnetosphere thus appears to be a highly dynamical and time dependent process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.