Inflammation is essential for successful embryo implantation, pregnancy maintenance and delivery. In the last decade, important advances have been made in regard to endogenous, and therefore non-infectious, initiators of inflammation, which can act through the same receptors as pathogens. These molecules are referred to as damage-associated molecular patterns (DAMPs), and their involvement in reproduction has only recently been unraveled. Even though inflammation is necessary for successful reproduction, untimely activation of inflammatory processes can have devastating effect on pregnancy outcomes. Many DAMPs, such as uric acid, high-mobility group box 1 (HMGB1), interleukin (IL)-1 and cell-free fetal DNA, have been associated with pregnancy complications, such as miscarriages, preeclampsia and preterm birth in preclinical models and in humans. However, the specific contribution of alarmins to these conditions is still under debate, as currently there is lack of information on their mechanism of action. In this review, we discuss the role of sterile inflammation in reproduction, including early implantation and pregnancy complications. Particularly, we focus on major alarmins vastly implicated in numerous sterile inflammatory processes, such as uric acid, HMGB1, IL-1α and cell-free DNA (especially that of fetal origin) while giving an overview of the potential role of other candidate alarmins.Reproduction (2016) 152 R277-R292
Summary Seasonally breeding mammals such as sheep use photoperiod, encoded by the nocturnal secretion of the pineal hormone melatonin, as a critical cue to drive hormone rhythms and synchronise reproduction to the most optimal time of year [1, 2]. Melatonin acts directly on the pars tuberalis (PT) of the pituitary, regulating expression of thyrotropin (TSH) which then relays messages back to the hypothalamus to control reproductive circuits [3, 4]. In addition, a second local intra-pituitary circuit controls seasonal prolactin (PRL) release via a currently uncharacterised low molecular weight peptide(s) termed tuberalin(s) of PT origin [5–7]. Studies in birds identified the transcription factor Eya3 as the first molecular response activated by long photoperiods (LP) [8]. Using arrays and in situ hybridization studies, we show Eya3 as the strongest LP activated gene in sheep, revealing a common photoperiodic molecular response in birds and mammals. We also identified TAC1 (encoding the tachykinins Substance P and Neurokinin A; NKA) to be strongly activated by LP within the sheep PT. We show that these PRL secretagogues act on primary pituitary cells, and are thus candidates for the elusive PT-expressed “tuberalin” seasonal hormone regulator.
Excessive placental inflammation is associated with several pathological conditions, including stillbirth and fetal growth restriction (FGR). While infection is a known cause of inflammation, a significant proportion of pregnancies have evidence of inflammation without any detectable infection. Inflammation can also be triggered by endogenous mediators, called damage associated molecular pattern (DAMPs) or alarmins. One of these DAMPs, uric acid is increased in the maternal circulation in pathological pregnancies and is a known agonist of the Nlrp3 inflammasome and inducer of inflammation. However its effects within the placenta and on pregnancy outcome remain largely unknown. We found that uric acid crystals (monosodium urate, MSU, crystals) induces a pro-inflammatory profile in isolated human term cytotrophoblast cells, with a predominant secretion of IL-1β and IL-6, a result confirmed in human term placental explants. Pro-inflammatory effects of MSU crystals were shown to be IL-1-dependent using a caspase-1 inhibitor (inhibits IL-1 maturation) and IL-1Ra (inhibits IL-1 signaling). The pro-inflammatory effect of MSU crystals was accompanied by trophoblast apoptosis and decreased syncytialisation. Correspondingly, administration of MSU crystals to rats during late gestation induced placental inflammation and was associated with fetal growth restriction. These results make a strong case for an active pro-inflammatory role of MSU crystals at the maternal-fetal interface in pathological pregnancies, and highlight a key mediating role of IL-1. Furthermore, our study describes a novel in vivo animal model of non-infectious inflammation during pregnancy, which is triggered by MSU crystals and leads to reduced fetal growth.
The 5' RNA cap structure (m7GpppRNA) is a key feature of eukaryotic mRNAs with important roles in stability, splicing, polyadenylation, mRNA export, and translation. Higher eukaryotes can further modify this minimal cap structure with the addition of a methyl group on the ribose 2'-O position of the first transcribed nucleotide (m7GpppNmpRNA) and sometimes on the adjoining nucleotide (m7GpppNmpNmpRNA). In higher eukaryotes, the DXO protein was previously shown to be responsible for both decapping and degradation of RNA transcripts harboring aberrant 5’ ends such as pRNA, pppRNA, GpppRNA, and surprisingly, m7GpppRNA. It was proposed that the interaction of the cap binding complex with the methylated cap would prevent degradation of m7GpppRNAs by DXO. However, the critical role of the 2’-O-methylation found in higher eukaryotic cap structures was not previously addressed. In the present study, we demonstrate that DXO possesses both decapping and exoribonuclease activities toward incompletely capped RNAs, only sparing RNAs with a 2’-O-methylated cap structure. Fluorescence spectroscopy assays also revealed that the presence of the 2’-O-methylation on the cap structure drastically reduces the affinity of DXO for RNA. Moreover, immunofluorescence and structure-function assays also revealed that a nuclear localisation signal is located in the amino-terminus region of DXO. Overall, these results are consistent with a quality control mechanism in which DXO degrades incompletely capped RNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.