Cable or wire rope barrier was being used in the 1940s and maybe earlier for vehicle containment. Through the years the designs have changed, but engineers continue to see cable barrier as an inexpensive barrier for use in some roadside applications. Recently, cable or wire rope has gained popularity as a median barrier for the prevention of cross-median accidents. Cross-median accidents are typically violent collisions with a high probability of multiple serious injuries and deaths. Thus, the design trend is gravitating toward providing positive vehicle containment in wider medians for which barriers have not historically been warranted. Wire rope often provides a cost-effective solution for this design scenario. Field experience with cable or wire rope barriers has identified areas for design improvement. It is desirable that cables remain taut to improve interaction with the vehicle, reduce dynamic deflections, and minimize maintenance. Additionally, reduced design deflections result in more potential application sites. Recent research demonstrates that such improvements are practical and cost-effective. Besides the initial tension in the wire ropes, other factors that can have a significant influence on dynamic deflections include post spacing and horizontal curvature. Computer simulations with cable barriers with various post spacings and horizontal curvatures were used to develop guidelines for expected design deflections. Finally, full-scale crash tests were completed with a new, cost-effective cable terminal system, and a brief review of the design and crash test results is included.
Three guardrail-to-bridge rail transitions were developed and subjected to full-scale crash tests. The transitions were ( a) a nested W-beam with W-beam rub rail that transitioned from a W-beam guardrail to a vertical concrete parapet bridge rail, ( b) a nested thrie-beam that transitioned from a W-beam guardrail to a tubular steel bridge rail, and ( c) a tubular steel transition that transitioned from a weak-post box-beam guardrail to a tubular steel bridge rail. The nested W-beam and the tubular steel transitions were tested and met NCHRP Report 350 Test Level (TL)-3 requirements. The nested thrie-beam transition was tested and met TL-4 requirements.
Design details and full-scale crash test results are presented for three bridge rails tested for compliance with NCHRP Report 350 Test Level 4 requirements. Designs of these rails are based on AASHTO LRFD Bridge Design Specifications. Each bridge rail consists of structural steel tubing rail elements mounted on wide-flange posts. The rails are generally stronger than many designs commonly used in the recent past. Full-scale crash test results demonstrated that all bridge rails meet NCHRP Report 350 safety performance requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.