Staging of two laser-driven, relativistic electron accelerators has been demonstrated for the first time in a proof-of-principle experiment, whereby two distinct and serial laser accelerators acted on an electron beam in a coherently cumulative manner. Output from a CO2 laser was split into two beams to drive two inverse free electron lasers (IFEL) separated by 2.3 m. The first IFEL served to bunch the electrons into approximately 3 fs microbunches, which were rephased with the laser wave in the second IFEL. This represents a crucial step towards the development of practical laser-driven electron accelerators.
We report on two types of modal instabilities observed in high power Yb amplifiers based on Large Mode Area Fibers. The first is observed to occur at a Threshold Power, which we refer to as Threshold Power Modal Instabilities (TPMI). The modal instability is observed as a decrease in beam quality or reduced core light output as higher order modes leak into the fiber cladding. In PM 25/400 fiber amplifiers, we observe the threshold for the modal instability to vary depending on pump wavelength detuning, with the onset occurring at approximately 15 W/m peak heat load. In PM 20/400 and 25/400 fiber amplifiers without stress rods or other polarization control, we can achieve 1 kW output, limited by available pump power, without modal instabilities. The second type of modal instability is observed for certain cases where the fiber initially operates without any sign of MI but then degrades over an extended operating time, leading to a similar behavior as the TPMI. We refer to the second class as Fiber Degradation Modal Instabilities (FDMI). For these degraded fibers, we observe that fiber performance is unchanged below the critical power for modal instabilities. Experiments on degraded fiber show a wavelength dependent permanent change in the degraded fiber with a memory of the original operating wavelength.
Laser-driven electron accelerators (laser linacs) offer the potential for enabling much more economical and compact devices. However, the development of practical and efficient laser linacs requires accelerating a large ensemble of electrons together ("trapping") while keeping their energy spread small. This has never been realized before for any laser acceleration system. We present here the first demonstration of high-trapping efficiency and narrow energy spread via laser acceleration. Trapping efficiencies of up to 80% and energy spreads down to 0.36% (1 sigma) were demonstrated.
We present results of pulsed, narrowband amplification at 1540.6nm using a polarization maintaining, large mode area gain fiber codoped with erbium and ytterbium. At a repetition rate of 55 kHz, 2.9 W of average 1540.6nm power were generated with a pulse duration of 136 ns, corresponding to an SBS free peak power of 360 W. The amplified signal was frequency doubled in peridically poled potassium titanyl phosphate and conversion efficiencies of up to 56% were generated. When varying the repetition rate between 55-150 kHz the conversion efficiency changed from 56% to 35% due to the limited pump power.
Detailed experimental results of staging two laser-driven, relativistic electron accelerators are presented. During the experiment called STELLA (staged electron laser acceleration), an inverse free-electron laser (IFEL) is used to modulate the electron energy, thereby, causing ϳ3 fs microbunches to form separated by the laser wavelength at 10.6 mm (equivalent to a 35 fs period). A second IFEL accelerates the electrons depending upon the phase of the microbunches entering the second IFEL with respect to the laser beam driving the second IFEL. The data presented includes electron energy spectra as a function of the phase delay and laser power driving the first IFEL. Also shown is a comparison with the computer model, which includes space charge and misalignment effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.