Mineral-associated organic matter is associated with a suite of soil minerals that can confer stability, resulting in the potential for long-term storage of carbon (C). Not all interactions impart the same level of protection, however; evidence is suggesting that C in certain mineral pools is dynamic and vulnerable to disturbance in the decades following harvesting. The objective of this research was to describe and characterize organic matter-mineral interactions through depth in horizons of soils of contrasting stand age. Sequential selective dissolutions representing increasingly stable mineral-associated organic matter pools from water soluble minerals (deionized water), organo-metal complexes (Na-pyrophosphate), poorly-crystalline minerals (HCl hydroxylamine), and crystalline secondary minerals (Na-dithionite HCl)) were carried out for Ae, Bf and BC horizons sampled from a Young and Mature forest site (35 and 110 years post-harvest) in Mooseland, Nova Scotia, Canada. Sequential selective dissolution extracts were analyzed for C, δ13C, iron (Fe) and aluminum (Al). Organo-metal complexes (OMC) were the largest mineral-associated OM pool in all horizons. This pool dominated the C distribution in B horizons (~60–70% of Bf bulk C), with a minor contribution from poorly-crystalline (PCrys), crystalline (Crys) minerals and water soluble (WS) associations. C in OMC and PCrys pools explained the variation in bulk C in horizons through depth at both sites. Twice as much C in OMC pools was measured at the Mature site compared to the Young site in the Bf horizons, supported by higher C:(Fe+Al) ratios. Isotopic analysis indicated that this extraction procedure isolated distinct mineral-associated OM pools. δ13C signatures of pyrophosphate-extracted OMC pools ranged from -27‰ to -28‰, similar to δ13C of bulk C and to plant-derived humic acids and associated biomass. The water soluble phase (mean δ13C = -29 ‰) was up to 2 ‰ more depleted, whereas the δ13C of Crys pools were more enriched in 13C (-13‰ to -16 ‰) compared to bulk soil. The results from this study suggest that association with minerals does not necessarily confer stability: organo-metal pools dominate in podzol horizons through depth, and contribute most to C storage, but are potentially susceptible to destabilization following the physical changes resulting from forest harvesting disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.